
De�ning and Measuring Con
icts

in Optimistic Replication�

John Heidemann Ashvin Goel Gerald Popek

University of California, Los Angeles

Technical report UCLA-CSD-950033

Abstract

Optimistic replication is often viewed as essential for
large scale systems and for supporting mobile comput-
ing. In optimistic replication, updates can be made con-
currently to di�erent �le replicas, resulting in multiple
versions of the �le. To recover from these con
icting
updates, after-the fact con
ict resolution actions are
required to recombine multiple versions into one. This
paper de�nes these concepts and discusses approaches
to measure them in optimistically replicated systems.

Measurement of the number of con
icting updates
and con
ict resolution is important to judge the prac-
ticality of optimistic replication. An environment
where con
icting updates are frequent will not be at-
tractive since users cannot assume they have up-to-date
data. Although many con
icts can be automatically
resolved, some con
icts require user intervention; such
con
icts cannot be too common. This paper shows an
approach to measure the number of con
icting updates.
From this measurement we derive the actual amount of
work done by the user or system to resolve con
icts
and the minimum amount of work required to resolve
con
icts.

1 Introduction

Optimistic replication is a key approach to address
a number of problems in distributed systems today.
Data replication across multiple servers can make ser-
vices more robust to failure. Replication is even more
important when sharing data between distant locations
where it can improve both performance and availability.
Cooperative work requires data sharing: if automatic

�This work was sponsored by the Defense Advanced Re-

search Projects Agency under contract N00174-91-C-0107. Ger-

ald Popek is also a�liated with Locus Computing Corporation.

The authors can be reached at 3564 Boelter Hall, UCLA, Los

Angeles, CA, 90024, or by electronic mail to johnh, ashvin, or
popek @cs.ucla.edu.

replication cannot be provided, or if it does not provide
adequate quality of service, then information will be
duplicated manually with correspondingly higher costs
and error rate. This case can be illustrated by two ex-
amples. Two colleagues at MIT and Berkeley collabor-
ate on writing a paper. Without replication their col-
laboration is dependent on the quality and reliability of
their network connection as they access a single shared
�le. Alternatively they must duplicate relevant �les
on each coast and manually coordinate exchanging up-
dates. As a second example, consider a single user with
a laptop and an o�ce computer. Without replication
that person must manually insure that �les stored on
each computer are identical, remembering which �les
were last changed where. In each of these examples op-
timistic replication automatically maintains local copies
of all relevant �les, allowing local-disk performance for
data stored in multiple locations.

Optimistic replication achieves high availability by
allowing reads and writes whenever a single �le replica
is available. There are two costs to this policy. First,
a read-operation can return stale data by reading from
an out-of-date replica. Second, concurrent updates to
di�erent replicas can produce multiple, potentially con-

icting versions of the same �le. Without knowledge of
data semantics, these two versions cannot be automat-
ically merged into a single version. The stale read and
the con
icting update problems are potential costs of
optimistic replication. This paper focuses on the second
of these costs as a means of evaluating optimistic rep-
lication.

Con
icting updates are an accepted and required
cost of doing business in many environments [3, 2].
Bank automatic tellers and airline reservation systems
are are the best known examples of commercial sys-
tems where performance and availability take preced-
ence over conservative consistency. Several approaches
have been suggested to detect and merge divergent
databases [1, 5] in these systems.

1

File replication is another example where the bene�ts
of optimistic replication can often outweigh the costs.
There is substantial existing work analyzing the cost
of con
icting updates in optimistic �ling from several
perspectives. Analysis of �le system usage [4, 9] shows
that �le sharing is rare, and practical experience with
optimistic �ling [12] suggests that in many �ling envir-
onments the number of con
icting updates can be ex-
tremely low. In addition, prior work has suggested that
�le system usage patterns can be exploited to minimize
the chance of stale reads or con
icting updates [8], and
�le semantics can be employed to automatically recover
from con
icting updates [12, 7, 10].
This paper augments existing empirical work by

providing a theoretical framework for evaluating the
cost of con
icting updates in optimistic replication. In-
tuitively, this cost is the ratio of the number of con-

icting updates to the total number of updates in the
system, modi�ed by the di�culty of resolving each con-

ict. There are two problems associated with measur-
ing the cost of optimism in this way. First, since any
update could potentially be con
icting, an algorithm to
detect a con
icting update must record each update.
We will show that this algorithm requires information
from each replica of the �le at each update. Second, as
we will see, this ratio is not an accurate measure of the
cost of optimistic replication.
The paper begins by describing an abstract optim-

istic system based on version vectors. The version vec-
tor relationships are expressed in terms of a dominates
graph. This relation is used to de�ne a con
icting up-
date and to count the number of con
icting versions in a
static system. Section 4 develops an algorithm to count
con
icting updates by examining each replica update.
The next section presents a relationship between con-

icting updates and con
ict resolutions and uses this
result to measure con
icting updates more e�ciently.
It also shows that the number of con
icting updates
does not accurately re
ect the total cost of optimistic
replication. We then show that global state is required
to correctly count con
icting updates and therefore our
improved algorithm is optimal. Section 7 uses these
results to re-examine the cost of optimistic replication,
considering both the cost of handling con
icts in an
actual system and the minimal possible cost. We con-
clude with a look at future directions.

2 System Model

Most optimistic �le replication systems rely on ver-
sion vectors or related techniques to record �le update
histories. This section describes version vectors, their
properties, and the events which change them. To illus-

trate these concepts, we then map these abstract events
to Ficus, an existing replicated �le system [6].

2.1 File replication

An optimistically-replicated �le-system consists of a
number of logical �les each stored as n separate �le
replicas. Con
icting updates are a property of a single
�le; notation in this paper refers to that �le.
The version of the data present in each replica is

captured by a version vector which uniquely identi�es
the update history of that replica [11]. Each replica
p of this n-replica �le has an n-element version-vector
vvp[1 : : : n].
In principle, version vector elements are unbounded

counters and n can grow arbitrarily large. In Ficus,
elements are 32-bit integers and n is typically less than
20. While version vector length changes in a prac-
tical system, for simplicity this paper assumes that n
is �xed. (Replica addition is possible by extending all
version vectors with new zero elements as required; rep-
lica deletion requires a two-phase garbage collection al-
gorithm.)
Before de�ning �le events that a�ect version vectors,

we need to de�ne the relationships between version vec-
tors.

2.2 Version vector relationships

There are several possible relationships between ver-
sion vectors that represent �le data.

De�nition 1 A version vector vvp of �le replica p

dominates version vector vvq if all elements of vvp are
greater than or equal to the corresponding elements of
vvq. That is, vvp � vvq i�

8i 2 [1 : : : n]; (vvp[i] � vvq [i])

(Note that by this de�nition a �le replica's version vec-
tor dominates itself.)

De�nition 2 A version vector vvp strictly dominates
version vector vvq if vvp dominates vvq and at least one
element of vvp is strictly greater than the corresponding
element of vvq. That is, vvp � vvq i�

(vvp � vvq) ^ (9i 2 [1 : : : n] : (vvp[i] > vvq[i]))

De�nition 3 A pair of version vectors are compatible
if at least one version vector dominates the other. That
is, vvp � vvq i�

((vvp � vvq) _ (vvq � vvp))

De�nition 4 A pair of version vectors con
ict if they
are not compatible. That is, vvp 6� vvq i�

((vvp 6� vvq) ^ (vvq 6� vvp))

2

2.3 File events and version vectors

In a quiescent �le, all �le replicas have the same ver-
sion vector.

De�nition 5 A �le is quiescent i�

8p 2 [1 : : : n]; vvp = vv1

There are three types of �le events that can modify
a version vector of the replicas of a �le: updates, ver-
sion propagation, and con
ict domination. An update
moves a �le away from quiescence; the other events
reduce �le entropy, eventually returning a �le to quies-
cence. Now we describe the three events.

De�nition 6 Update: An update to a �le replica p

modi�es the version vector of that replica. It incre-
ments the pth component of the version vector of p.

vvp[p]
0 vvp[p] + 1

Updates to an optimistically replicated �le results in
�le replicas with di�erent version vectors. Concurrent
updates to di�erent replicas can result in con
icting
�le versions. Such a concurrent update is known as a
con
icting update.

De�nition 7 A con
icting update to �le replica p of
a �le occurs when that update causes vvp to become in
con
ict with vvq of some other �le replica q with which
it was compatible before the update. An update to p

transforming vvp to vv0p is con
icting i�

9q 2 [1 : : : n] : (vvq � vvp) ^ (vvq 6� vv0p)

When an update occurs to replica p, the �le has mul-
tiple, possibly con
icting, versions. Additional action
must be taken to return the �le to quiescence. Update
propagation is the basic mechanism to reduce entropy.

De�nition 8 Version propagation: If �le replica q

dominates p (vvq � vvp) then in version propagation
its contents are propagated and vvp is set to vvq.

vv0p vvq

Version propagation is allowed only when one �le
replica dominates another. If this were not the case
and propagation took place between two �les in con-

ict then data could be lost as one update would be
overwritten by the other.
When two replicas con
ict, a second approach, con-

ict domination, is required. A special program must
examine both �les and merge their contents according
to the semantics of the data, to produce a single new
version. This new version is then written back over
one of the replicas and its version vector is modi�ed to
re
ect the merge.

De�nition 9 Con
ict domination: Given two con-

icting �le replicas p and q, p is declared to have the
\correct" data and is made to dominate q and then
updated once.

8i 2 [1; n]; vvp[i]
0 max(vvp[i]; vvq [i]) +

�
1 i = p

0 i 6= p

2.4 An implementation

To gain a better understanding of how these opera-
tions behave in a practical system let us examine Ficus,
an optimistically replicated �le system developed and
in use at UCLA [6].
In Ficus, there are several events that can cause ver-

sion vectors to change:

Ficus �le update At arbitrary times a user will up-
date a �le. This action results in a �le replica up-
date (De�nition 6) immediately followed by Ficus
update noti�cation.

Ficus update noti�cation Each �le update is fol-
lowed by a noti�cation message sent to all other
currently accessible �le replicas. This message is a
one-shot, best-e�ort attempt to trigger Ficus up-
date propagation by other replicas.

Ficus update propagation When a site receives an
update noti�cation message it invokes version
propagation (De�nition 8) from the updated rep-
lica to the old replica. This propagation will fail if
the versions con
ict.

Ficus reconciliation To encourage �les to reach qui-
escence we periodically compare �le replica p with
another �le replica q. Replicas pass information
indirectly through a gossip-based protocol [7] in-
suring that information exchanged in pairwise re-
conciliations eventually reaches all replicas. If
vvq � vvp, p invokes version propagation from q.
If this is not possible because the two �le replicas
con
ict, Ficus automatic con
ict resolution is at-
tempted.

Ficus automatic con
ict resolution When two �le
replicas con
ict, the �le name and its type are used
to search for an applicable con
ict resolver [12]. If
a resolver is found, it is invoked to merge the rep-
licas into one version. It updates one replica with
the merged data and performs con
ict domination,
replacing the old replica with the merged one. It
then invokes Ficus update noti�cation to distrib-
ute the new version. If no automatic resolver is
found than e-mail is sent to the �le owner request-
ing Ficus manual con
ict domination.

3

Ficus manual con
ict domination As a last resort
a user must manually merge �le versions and in-
voke a utility which performs con
ict domination
and Ficus update noti�cation.

These descriptions map our three fundamental �le
replica events to operations in a practical system.

3 File versions in a static system

Before examining con
icting updates in a dynamic
system it is useful to examine the simpler static case.
At a given point in time, we would like to determine
which signi�cant �le replica versions represent unique
data. Intuitively, versions are signi�cant if they are
not dominated by any other version. A non-signi�cant
version can be replaced by some other signi�cant ver-
sion which dominates it through version propagation.
No data is lost in this process since all the updates in
the non-signi�cant version are present in the signi�cant
version.

De�nition 10 At a given time, version vector vvp rep-
resents a signi�cant version i�

6 9q 2 [1 : : : n] : (vvq � vvp)

Multiple signi�cant versions arise from con
icting
updates and must be eventually merged with con
ict
domination.
It is helpful to represent the relationship between �le

versions graphically. To do so, we will further invest-
igate the dominates relation.

Theorem 1 The dominates relation is a partial order.

Proof: From inspection of De�nition 1, the domin-
ates relation is re
exive, antisymmetric and transitive
and thus a partial order. 2
Let us consider the graph G0 induced by the dom-

inates relation. Since by Theorem 1, the dominates
relation is a partial order, G0 is a DAG and may have
multiple terminal vertices. Now consider the graph
G = (V;E) a transitive reduction graph of G0.

V = fvvp j p 2 [1; n]g

E = f(vvP ; vvQ) 2 V � V j (vvQ � vvP)

^ 6 9vvR 2 V : (vvQ � vvR � vvP)g

G is obtained by removing edges from G0 such that
the closures of G and G0 are the same. Figure 1 shows
the dominates graphG for a �ve replica �le. This graph
has the property that all terminal nodes represent sig-
ni�cant versions.

 a
20000

 e
01000

 b
22010

 c
22100

 d
22020

Figure 1: The graph G = (V;E) for a �ve replica �le.
Ovals represent �le versions; bold ovals represent sig-
ni�cant versions.

Theorem 2 Terminal nodes in the dominates graph
G are equivalent to signi�cant �le versions.

Proof: If vvp is signi�cant, by De�nition 10 it is a
maximal element of the dominates partial order. Graph
G is induced by the dominates relationship. Max-
imal elements of a partial order correspond to terminal
nodes in their induced graph. 2
An example of a dominates graph can be seen in

Figure 1. Replicas c and d are the signi�cant versions.
In the �gures, the �rst element of the version vector
corresponds to a, the second element corresponds to b

and so on.
There are two important facts to note about G.

First, determining G requires an atomic picture of ver-
sion vectors of all �le replicas. Second, since the same
version of �le data can exist at multiple replicas, there
is a one-to-many mapping between �le versions and �le
replicas. For example, in Figure 1, if version propaga-
tion took place from c to a, both would be merged into
a single �le version. Throughout this paper we use up-
percase to refer to �le versions and lowercase to refer
to particular replicas.

4 A Simple Algorithm to Count

Con
icting Updates

There is a close relationship between con
icting up-
dates and whether replicas are signi�cant or not. We
will show that con
icting updates are updates which
occur to non-signi�cant replicas, and use this result
to develop an algorithm to count con
icting updates.
To develop this relationship we require two preliminary
results.

Lemma 1 The local component of replica p, vvp[p], is
greater than or equal to the pth component of any other
replica.

8q 2 [1 : : : n]; (vvp[p] � vvq[p])

4

Proof: Let us look at the three system events. An
update increments the local version vector component,
thus the local component must be greater than any
other. A version propagate increments the version vec-
tor of q only if p dominated it. So the pth component
of q can not be greater than that of p. Finally a con-

ict dominate assigns to the version vector of q, the
maximum of the version vectors of p and q and then
updates q once. Again the pth component of q can not
be greater than that of p. 2

Lemma 2 After an update to replica p, vvp is signi-
�cant.

Proof by contradiction: An update to p changes vvp
to vv0p. Since the update increases the local version
vector component, vv0p � vvp. Suppose vv0p is non-
signi�cant. Then there exists a replica q which dom-
inates p0, by the inverse of De�nition 10. Therefore,
8i 2 [1; n]; vvq [i] � vvp[i]

0 � vvp[i]. However by
Lemma 1, vvp[p] � vvq[p]. The update to replica p

makes vvp[p]
0 > vvp[p] � vvq[p]. Thus q can not dom-

inate p0, a contradiction. 2
Using these results we can now directly relate con-

icting updates and replica signi�cance.

Theorem 3 An update is a con
icting update i� it is
made to a non-signi�cant replica.

Proof:) : To prove this part of the theorem, let us
show that an update to a signi�cant replica p implies
that there is no con
icting update. An update to a sig-
ni�cant replica does not change the dominates graph.
If the signi�cant replica p dominated some other rep-

lica q then it still dominates that replica after this up-
date since the update increases the version vector of
p. If the signi�cant replica p was in con
ict with rep-
lica q then there 9i : vvq [i] > vvp[i]. Component i

could not be equal to p by Lemma 1. Since only vvp[p]
changes during the update, vvq[i] is still greater than
vvp[i]

0. Similarly the component of p that was greater
than the corresponding component of q is still greater.
Thus p0 still con
icts with q. Thus no replica has come
in con
ict with some other replica with which it was
not in con
ict before the update.
(: An update to a non-signi�cant replica p makes

that replica signi�cant by Lemma 2. Before the update,
some other replica q dominated the old p. After the up-
date both the replicas are signi�cant. Their version vec-
tors are not equal because by Lemma 1, vvp[p] � vvq [p].
The update to replica pmakes vvp[p]

0 > vvp[p] � vvq [p].
Thus they are in con
ict after the update although they
were not before the update. 2

algorithm simple cu count
input: the time range [u; v]
output: CU[u;v]

begin
Tupdate := all update events over [u; v]

CU[u;v] := 0
foreach (t 2 Tupdate)

begin
G(t�) = G(just before t)
G(t+) = G(just after t)
foreach (p 2 [1; n])
begin

if (vvp is signi�cant in G(t+)
^ vvp is non-signi�cant in G(t�))
then CU[u;v] := CU[u;v] + 1

end
end
return CU[u;v]

end

Figure 2: The basic algorithm for detecting con
icting
updates. G(t) is the dominates graph at time t.

With this relationship we can now develop a simple
algorithm to detect con
icting updates (see Figure 2).
This algorithm examines each update event on a rep-
lica and classi�es that replica as signi�cant or non-
signi�cant.

While this algorithm implements Theorem 3 to cal-
culate the number of con
icting updates in a straight-
forward manner, it is not satisfactory for use in a prac-
tical system. A �rst problem with the algorithm is that
it employes a global snapshot (to calculate G) which
is expensive in number of messages and involvement of
all replicas. Updates are quite frequent in a replicated
�le system, so the cost of a global snapshot with each
update would be prohibitively expensive in any prac-
tical system. An even more serious problem with this
algorithm is that optimistic replication is most useful in
environments where communication between replicas is
occasionally or even primarily unavailable. When com-
munication is unavailable for hours, days, or weeks, an
algorithm requiring global communication is not prac-
tical. Moreover, con
icting updates are most likely to
occur when version propagation fails because of com-
munication loss. It is at these very times that we need
global communication to determine whether a con
ict-
ing update has been made.

We would like to improve this algorithm by address-
ing both of these problems. We examine each in the
sections that follow.

5

5 A Better Algorithm to Count

Con
icting Updates

Even though the events in Tupdate are su�cient to
properly determine the number of con
icting updates,
many of these events are not necessary. For example,
experience with Ficus suggests that the vast majority
of updates do not create con
icting updates [12].
Fortunately in many cases we can determine the same

information much more e�ciently. We next show that
there is a relationship between the number of con
icting
updates and the number of con
ict domination events.
This relationship can be exposed by considering how
these events change the number of signi�cant versions
over time. We then will present a revised algorithm
making use of these results.

5.1 File versions in a changing system

File events change number of signi�cant versions over
time, so it is useful to de�ne ISV as a function of time,
ISV(t). The number of signi�cant versions of the �le
changes in a stepwise manner over the lifetime of a �le;
it is discontinuous when it changes. To characterize
this discontinuous nature let c(t) = lim�!0(ISV(t +
�)� ISV(t� �)), the change in ISV(t) at time t.
We assume that �le events do not occur simultan-

eously, so c(t) is either �1, 0, or +1.
Let Tu[u; v] and Td[u; v] be the set of time in-

stants over the period [u; v] when ISV(t) increases and
decreases in value, respectively. Then Tu[u; v] and
Td[u; v] can be de�ned as:

Tu[u; v] = fu < t < v j c(t) > 0g

Td[u; v] = fu < t < v j c(t) < 0g

(We will write Tu and Td when we are not concerned
about the time interval.)
Figure 3 shows an example of an ISV(t) graph. The

sets Tu and Td are indicated by di�erent arrows across
the top of the graph.

5.2 Characterizing �le events

Now that we have de�ned the time instants during
which ISV(t) changes, let us examine each system event
that can alter �le version vectors to see which of these
events a�ect ISV(t).

Update: By Lemma 2, replica p is signi�cant after an
update. This update can be con
icting or non-
con
icting:

Con
icting update: A con
icting update is an
update to a non-signi�cant node (3). The

time (t)

1

2

3

4

Ts

Tu

Td

ISV(t)

ISV change

Figure 3: ISV plotted as a function of time.

update makes it a signi�cant node without
changing any other dominates relationship in
the dominates graph, and so the number of
signi�cant nodes or ISV(t) increases by one.
Con
icting updates are thus a part of Tu.

Non-con
icting update: A non-con
icting up-
date is an update to a signi�cant node. This
update does not change the dominates graph.
Thus ISV(t) does not change.

Version propagation: By De�nition 8, only a �le
replica with a non-signi�cant version vector can
be changed by version propagation. This non-
signi�cant version vector becomes equal to some
other vector which had dominated it earlier. This
does not lead to a change in ISV(t).

Con
ict domination: Consider the dominates graph
G. Let a con
ict domination occur at time t

between a pair of replicas p and q. A con
ict dom-
ination event could be of three types:

S-S: In this interaction, both p and q are signi-
�cant. A S-S event combines the two signi-
�cant versions and forms a single new one,
thus reducing ISV(t) by one. Figure 4 shows
a S-S event. The con
ict domination event
is represented by the dotted arrow. Replica
d is made to dominate c and updated loc-
ally. By De�nition 9 its new version vector
is max(22020; 22100) + 00010 = 22130 and
ISV(t) has decreased from 2 to 1. S-S events
are therefore part of Td.

S-NS: In this interaction, replica p is signi�cant
while q is non-signi�cant. A S-NS event

6

 e
01000

 a
20000

 e
01000

 b
22010

 c
22100

 d
22020

 a
20000

 b
22010

 c
22100

 d
22130

Figure 4: A signi�cant/signi�cant two way con
ict-
domination event (represented by the dotted arrow).

does not change the number of signi�cant ver-
sions. One signi�cant version is replaced by
another one. Thus ISV(t) does not change
in this event. In Figure 5 we show this
event. Replica b is made to dominate c and
updated locally. Its new version vector is
max(22010; 22100)+ 01000 = 23110.

NS-NS: In this interaction, both p and q are non-
signi�cant. An NS-NS event causes the cre-
ation of a new signi�cant node from two non-
signi�cant node thus increasing the number
of signi�cant versions or ISV(t) by one. Fig-
ure 6 shows this event. Replica e is made
to dominate a and updated locally, and its
version vector becomes max(01000; 20000)+
00001 = 21001. ISV(t) increases from 2 to 3.
NS-NS events are therefore part of Tu.

Table 1 summarizes how �le events a�ect ISV(t).

5.3 A better algorithm

We have shown how the di�erent �le events a�ect
the number of signi�cant versions. To develop a bet-
ter algorithm for counting con
icting updates, we must
show the relationship between con
icting updates and
con
ict domination events. This requires one more re-
lationship regarding changes to ISV(t).

Lemma 3 If, at two times u and v, ISV(u) = ISV(v),
then jTu[u; v]j = jTd[u; v]j.

Proof: jTu[u; v]j is the sum of the positive changes,
and jTd[u; v]j is the sum of the negative changes in the

 e
01000

 a
20000

 e
01000

 b
22010

 c
22100

 d
22020

 a
20000

 c
22100

 b
23110

 d
22020

Figure 5: A signi�cant/non-signi�cant con
ict domin-
ation event.

 a
20000

 e
01000

 b
22010

 c
22100

 d
22020

 a
20000

 d
22020

 c
22100

 e
21001

 b
22010

Figure 6: A non-signi�cant/non-signi�cant con
ict
domination event.

Event ISV(t)
update:

con
icting +1
non-con
icting 0

version propagation: 0
con
ict domination:

S-S �1
S-NS 0
NS-NS +1

Table 1: Variation in ISV for each �le event.

7

ISV graph. Since the end points are equal, these values
must be equal. 2
We can now prove the theorem that will be the basis

of our improved algorithm.

Theorem 4 If, at two times u and v, ISV(u) =
ISV(v), then CU[u;v] = jTS-S[u; v]j � jTNS-NS[u; v]j.

Proof: Since ISV(u) = ISV(v), we know that
jTu[u; v]j = jTd[u; v]j, from Lemma 3. From Table 1
we know that if TCU[u; v], TS-S[u; v] and TNS-NS[u; v]
are the sets of con
icting-update, S-S, and NS-NS con-

ict domination events, then

Tu[u; v] = TCU[u; v] [TNS-NS[u; v]

Td[u; v] = TS-S[u; v]

Therefore TCU[u; v] [TNS-NS[u; v] = TS-S[u; v]. 2
From this theorem we derive the algorithm shown

in Figure 7, So this algorithm takes advantage of
the fact that we can derive CU[u;v] from TS-S and
TNS-NS. TS-S and TNS-NS occur only during con
ict
domination events (Tcon
ict dominate) while TCU[u; v]
can occur during any update event (Tupdate). This
algorithm represents a signi�cant improvement in
practice because experience with Ficus suggests that
jTcon
ict dominatej � jTupdatej. Over a nine-month
period with Ficus running on approximately a dozen
workstations, 14,142,241 �le updates occurred, while
only 489 con
ict dominations were required [12].

6 Optimality of the Global Snapshot

Algorithm

We have shown that the number of con
icting up-
dates is dependent on changes to ISV(t), and how we
determine CU by examining con
ict domination events.
Our current algorithms require a global snapshot of
version vectors from each replica at each con
ict dom-
ination event to determine CU. We now prove that this
snapshot is essential to correctly measure resolutions.

Theorem 5 A change in the ISV(t) can be determined
only by taking a global snapshot of all replica version
vectors.

Proof: We've shown that ISV(t) decreases only at
con
ict domination events, so consider such an event
occurring between two replicas p and q. The improved
algorithm requires knowing when a S-S or NS-NS
con
ict-domination event occurs. This requires know-
ing whether p and q are signi�cant or not. We prove
that it is necessary to take a global snapshot to de-
termine whether p or q are signi�cant by showing that
without global information, errors can result.

algorithm better cu count
input: the time range [u; v]
pre-condition: ISV(u) = ISV(v)
output: CU[u;v]

begin
Tcon
ict dominate := all con
ict dominate

events over [u; v]
S-S := 0
NS-NS := 0
foreach (t 2 Tcon
ict dominate)
begin

ISV(t�) := ISV(just before t)
ISV(t+) := ISV(just after t)
c(t) := ISV(t+)� ISV(t�)
if (c(t) > 0) then

NS-NS := NS-NS+ 1
if (c(t) < 0) then

S-S := S-S + 1
end
CU[u;v] := S-S�NS-NS
return CU[u;v]

end

Figure 7: A better algorithm for detecting con
icting
updates.

Suppose we do not take a global snapshot, let us
assume that we do not record the version vector of
replica r during the con
ict domination. Assume that
vvp � vvr or vvq � vvr. Let us also assume that after
comparing all the version vectors except r, replicas p
and q were both signi�cant before the domination. If
we now postulate an independent update occurring at
r just before the domination, this update makes replica
p non-signi�cant. The con
ict domination now occurs
between S-NS replicas rather than S-S replicas, and so
does not decrease ISV. Since an independent update
to another replica can spoil ISV measurement, an ISV
measurement must have information of all �le version
vectors. 2

7 Cost of Optimistic Replication

We have presented two algorithms for counting con-

icting updates. While the ratio of con
ict updates
to total updates provides one means of judging costs
of optimistic replication, it is not the most direct way
to measure the cost perceived by users of such a sys-
tem. To a user a con
icting update appears no di�erent
from any other update; the real cost of optimism is the
amount of e�ort required to remove all con
icts from

8

a con
icted �le.
Transforming a �le with multiple con
icting versions

into a �le with a single signi�cant version is con
ict
resolution. A con
ict resolution event occurs each time
ISV(t) decreases.
We next explore the cost of con
ict resolution from

two perspectives. First we consider how to measure
actual cost, the amount of time spent attempting to
repair con
icts. We then examine the theoretical min-
imal cost, the ideal amount of work required to return
a con
icted �le to a single signi�cant version.

7.1 Actual cost

The actual cost of optimistic replication is the
amount of extra work expended attempting to return
the �le to a single signi�cant version. Each con
ict
domination is an attempt to resolve a con
ict and there-
fore is part of the actual cost. In the terminology de-
scribed in Section 2.4, all Ficus automatic and manual
con
ict domination events contribute to this cost.
Unfortunately, not all con
ict dominations are suc-

cessful at moving the �le to a single signi�cant version.
The analysis of con
ict domination events (Table 1)
shows that only S-S con
ict dominations are helpful.
Con
ict dominations between S-NS replicas do not im-
prove matters, while NS-NS dominations actually in-
troduce a new con
ict.
We consider all con
ict domination events as part of

the actual cost because even though not all such events
resolve a con
ict, they all represent work undertaken by
the system in an attempt to resolve a con
ict. Con
ict
domination events should therefore be considered as an
upper bound to the minimum cost required to provide
a single signi�cant �le version.

7.2 Minimal cost

While the actual cost is useful to evaluate the ef-
fort spent resolving con
ict in a real system, it does
not represent a tight bound of the minimum work re-
quired. Figure 8 shows how a poor choice of con
ict
dominate events can prevent ISV(t) from ever reaching
one while a better choice could resolve the con
ct with
only one domination. The NS-NS con
ict domination
in the top of the �gure fails to resolve the con
ict and
in fact produces a new one. After the S-S domination
in the middle of the �gure, we have returned to the ini-
tial state. This sequence of events could be repeated
in�nitely. The problem here is that con
ict domination
between NS-NS versions produces a new �le version
which then requires further con
ict domination.
The minimal cost assumes that all con
ict domin-

ation events are con
ict resolutions. Minimal cost is

 d
0010

 b
1000

 c
0020

 c
0020

 b
1000

 d
1011

 a
2010

 a
2010

 a
3020

 c
0020

 b
1000

 d
1011

Figure 8: Poor choice of con
ict domination prevents
quiescence.

therefore the number of S-S con
ict domination events.
The minimal cost can be measured by the number of
S-S events counted in the improved algorithm (Fig-
ure 7).

If new �le updates are prohibited after time t, the
minimal cost of resolving all con
icts for a �le is simply
ISV(t)� 1.

8 Future Work

This paper de�nes how optimistically replicated �les
interact, presents two algorithms to measure con
icting
updates, and shows that any such algorithm requires
global information. These results provide several in-
sights into our existing work with optimistic replication
and suggest several directions for future work.

8.1 O�-line measurement of con
icting
updates

We have demonstrated that global knowledge is re-
quired to correctly count con
icting updates. Unfor-
tunately, the communication requirements for global
snapshots does not match the communications guar-
antees available in optimistic systems. With mobile
computers, replicas may communicate infrequently, so
as n grows beyond a small number, replicas may either
never contact each other or communicate once in days
or months.

Our simple algorithm for counting con
icting up-
dates can be executed without taking on-line snapshots
if it is decomposed into two parts. The on-line por-

9

tion of the algorithm would log each �le update event.
These logs would be merged o�-line and then analyzed
to count con
icting updates. Logs would be gathered at
a central site via a protocol robust to intermittent com-
munication (for example, gossip or store-and-forward).
By separating the algorithm into on-line and o�-line
components we make it robust to intermittent commu-
nication. Unfortunately, a complete log of all updates
would be very large.

Our improved algorithm required snapshots at con-

ict domination events only, rather than all updates.
This suggests that we study o�-line algorithms that re-
quire logging fewer events.

8.2 Improved con
ict domination

Con
ict domination attempts to merge con
icting
versions. Unfortunately, we have shown that NS-NS
con
ict domination events actually create new signi�c-
ant �le versions. To minimize this possibility we plan
to modify Ficus automatic con
ict domination to ex-
amine all currently available replicas before performing
a con
ict dominate. Although this examination cannot
guarantee that NS-NS domination events do not occur,
it will minimize their possibility.

9 Conclusion

This paper has de�ned relationships between version
vectors and �le replicas in an optimistically replicated
system. These relationships can be expressed as a dom-
inates graph. We use these relationships to count the
number of con
icting versions in a static system and to
develop an initial and an improved algorithm to count
con
icting updates. Finally we have shown that the
number of con
icting updates does not directly relate
to the cost of resolving con
icts in an optimistic system.
Instead we found that that both actual and minimal
costs depend on how con
icts are resolved.

We believe this paper makes three contributions to
the �eld. First, we provide a clear framework for reas-
oning about con
icts in optimistic replication. Second,
we present algorithms which can be used to measure
the number of con
icts in an existing system. We have
shown that global state is required by these algorithms
and have suggested how the algorithms can be adapted
to cope with intermittent communication. More im-
portantly, we have shown how con
icting updates and
con
ict resolutions relate to the actual costs observed
by the user of an optimistic system. These algorithms
provide a clear means to judge the costs of optimism
and therefore to compare its costs and bene�ts. Finally,
the insights gained through de�nitions and measure-

ments developed in this paper have suggested several
changes we would like to make to an existing replicated
system.
We believe that many truly scalable distributed sys-

tems of the future will require optimistic replication. A
key question in the deployment of such systems is the
costs of optimism. We believe that this paper provides
a framework for analyzing these costs.

Acknowledgments

The authors would like to thank Dave Ratner and
Greg Skinner for their contributions toward this work.
We would also like to thank Elizabeth Borowsky for
her comments on an early draft of this paper. The
ideas presented here ideas grew from discussions re-
garding the Ficus replicated �le system including Mi-
chial Gunter, Ted Kim, Geo� Kuenning, Peter Reiher,
Qian Qin, John Salomone, and S. Suresh.

References

[1] B. Blaustein, H. Garcia-Molina, D. Ries,
R. Chilenskas, and C. Kaufman. Maintaining rep-
licated databases even in the presence of network
partitions. In Proceedings of the IEEE EASCON
Conference, September 1983.

[2] Stefano Ceri, Maurice A. W. Houtsma, Arthur M.
Keller, and Pierangela Samarati. The case for in-
dependent updates. In Proceedings of the Second
Workshop on Management of Replicated Data,
pages 17{19. IEEE, November 1992.

[3] Alan R. Downing, Ira B. Greenberg, and Jon M.
Peha. OSCAR: a system for weak-consistency rep-
lication. In Proceedings of the Workshop on Man-
agement of Replicated Data, pages 26{30. IEEE,
November 1990.

[4] Rick Floyd. Short-term �le reference patterns in
a UNIX environment. Technical Report TR-177,
University of Rochester, March 1986.

[5] Hector Garcia-Molina, Tim Allen, Barbara
Blaustein, R. Mark Chilenskas, and Daniel R.
Ries. Data-patch: Integrating inconsistent cop-
ies of a database after a partition. In Proceedings
of the Third IEEE Symposium on Reliability in
Distributed Software and Database Systems, pages
38{44, October 1983.

[6] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and Dieter
Rothmeier. Implementation of the Ficus replicated

10

�le system. In USENIX Conference Proceedings,
pages 63{71. USENIX, June 1990.

[7] Richard G. Guy, Gerald J. Popek, and Thomas W.
Page, Jr. Consistency algorithms for optimistic
replication. In Proceedings of the First Interna-
tional Conference on Network Protocols. IEEE,
October 1993.

[8] John S. Heidemann, Thomas W. Page, Jr., Rich-
ard G. Guy, and Gerald J. Popek. Primarily dis-
connected operation: Experiences with Ficus. In
Proceedings of the Second Workshop on Manage-
ment of Replicated Data. IEEE, November 1992.

[9] James J. Kistler and Mahadev Satyanarayanan.
Disconnected operation in the Coda �le sys-
tem. ACM Transactions on Computer Systems,
10(1):3{25, 1992.

[10] Puneet Kumar and Mahadev Satyanarayanan.
Supporting application-speci�c resolution in an
optimistically replicated �le system. In Proceed-
ings of the Fourth Workshop on Workstation Op-
erating Systems, pages 66{70, Napa, California,
October 1993. IEEE.

[11] D. Stott Parker, Jr., Gerald Popek, Gerard
Rudisin, Allen Stoughton, Bruce J. Walker,
Evelyn Walton, Johanna M. Chow, David Ed-
wards, Stephen Kiser, and Charles Kline. De-
tection of mutual inconsistency in distributed sys-
tems. IEEE Transactions on Software Engineer-
ing, 9(3):240{247, May 1983.

[12] Peter Reiher, John S. Heidemann, David Ratner,
Gregory Skinner, and Gerald J. Popek. Resolving
�le con
icts in the Ficus �le system. In USENIX
Conference Proceedings, pages 183{195. USENIX,
June 1994.

11

