
University of California
Los Angeles

Stackable Layers:

An Architecture for File System Development

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

John Shelby Heidemann

1991

This document is available as Technical Report CSD-910056 of the UCLA

Computer Science Department. A PostScript version is available via anonymous

ftp to ftp.cs.ucla.edu as pub/ficus/ucla csd 910056.ps. The author can be

reached by electronic mail by johnh@cs.ucla.edu.

This document was last changed August 8, 1991.

Unix is a trademark of AT&T. SunOS and NFS are trademarks of Sun Mi-

crosystems. PostScript is a trademark of Adobe Systems Incorporated. Apple

and HyperCard is a registered trademarks of Apple Computer, Incorporated.

c© Copyright by

John Shelby Heidemann

1991

The thesis of John Shelby Heidemann is approved.

Rajive Bagrodia

Richard R. Muntz

Wesley W. Chu, Committee Co-Chair

Gerald J. Popek, Committee Co-Chair

University of California, Los Angeles

1991

i

To my family—

my mother Dorothy

and my brother Ben

ii

Table of Contents

1 Introduction . 1

1.1 Introduction . 2

1.2 Related Work . 4

1.2.1 Symmetric interfaces . 4

1.2.2 File system structuring . 5

1.2.3 Stackable file systems . 5

1.3 Overview of the Thesis . 5

2 Interface Design . 7

2.1 Extensibility . 9

2.2 Stacking . 12

2.3 Stack Configuration . 14

2.4 Interface Definition . 16

2.5 Efficiency . 16

2.6 Flow of Control . 16

2.7 Opaqueness . 17

2.8 Summary . 18

3 Interface Implementation . 19

3.1 The Existing Interface . 21

3.2 Extensibility in the 405 Interface 24

3.3 Stack Creation . 25

3.3.1 Stack configuration . 25

3.3.2 File-level stacking . 27

3.4 Stacking and Extensibility . 28

3.5 Inter-machine Operation . 31

3.6 Centralized Interface Definition 32

3.7 Flow of Control . 33

iii

4 Layering Techniques . 37

4.1 A Hypothetical Example . 38

4.2 Layer Composition . 41

4.3 Layer Substitution . 42

4.4 Cooperating Layers . 44

4.5 Multi-layer Access . 45

4.6 File System Testing and Verification 46

4.7 Compatibility with Layers . 46

4.8 Out-of-kernel Development . 47

5 Example Layers . 49

5.1 A Minimal Layer . 50

5.1.1 Null layer details . 50

5.1.2 Layer tuning . 51

5.1.3 Null layer use . 52

5.2 A Measurements Layer . 52

5.3 Transport Layers . 54

5.4 Ficus: replicated file services . 55

5.5 Interface Versioning Layers . 58

5.6 A Consistency Layer . 58

5.7 Other Layers . 62

5.8 Summary . 64

6 Evaluation . 65

6.1 Interface Performance . 66

6.1.1 Micro-benchmarks . 66

6.1.2 Interface performance . 68

6.1.3 Multiple layer performance 69

6.2 Layer Implementation Effort . 71

6.2.1 Minimum layer development 73

6.2.2 Layer development experience 75

6.2.3 Layer development examples 76

iv

6.2.4 Large scale example . 79

6.3 Summary . 79

7 Related Work . 81

7.1 The Vnode Interface . 82

7.2 Rosenthal’s Stackable Vnode Interface 83

7.2.1 Stacking configuration . 83

7.2.2 Stack view consistency . 84

7.2.3 Interface extensibility . 87

7.3 MachObjects . 87

7.4 The x-kernel . 88

7.5 Summary . 89

8 Conclusions . 91

8.1 Contributions . 92

8.2 Future Work . 92

8.3 Summary . 94

References . 95

v

List of Figures

2.1 A simple file system stack and improvements. 13

2.2 A tree of file system layers to provide disk mirroring. 14

3.1 A typical file system namespace. 22

3.2 A namespace composed of two subtrees. 22

3.3 Operations supported in SunOS 4.0.3. 23

3.4 Mounting a UFS layer. 26

3.5 Stacking an encryption layer over the UFS. 27

3.6 A two-level stack of vnodes. 28

3.7 The problem of passing new operations through an old layer. . . . 30

3.8 Upcalls proceeding up a stack and between parallel stacks. 33

4.1 The Ficus stack of layers. 43

4.2 Multi-layer access for transmission of encrypted data. 45

4.3 User-level layer development via transport layers. 48

5.1 Measurement layers analyzing a caching layer. 53

5.2 Decomposed Ficus physical and disk storage layers. 57

5.3 Logical configuration of a cache consistency layer. 60

5.4 Layer configuration of the prototype cache consistency layer. . . . 61

6.1 Operation invocation under the vnode and 405 interfaces. 67

6.2 Elapsed time as layers are added. 71

6.3 System time as layers are added. 72

6.4 A mounted pass-through layer. 73

7.1 File-system in a file. 84

7.2 Rosenthal’s v top approach to stack management. 85

vi

List of Tables

2.1 Vnode interface evolution in SunOS. 9

6.1 Modified Andrew benchmark comparisons. 69

6.2 Recursive copy and remove comparisons. 70

6.3 Null layer implementation costs. 74

6.4 A comparison of several file system layers by lines of C code. . . 77

6.5 A evaluation of file system layers by lines of C code. 77

vii

Acknowledgments

This work would not have been possible without the support of my advisor,

Dr. Gerald Popek, to whom I am most grateful. I would also like to thank the

other members of the Ficus Project at UCLA. In particular I would like to thank

Richard Guy for the distributed garbage collection algorithms which prompted

the construction of a new file system, Tom Page for a careful reading of a draft

of this thesis, and Dieter Rothmeier, Wai Mak, and Yuguang Wu for being the

first to use the new interface.

I also would like to gratefully acknowledge the support of the Defense Ad-

vanced Research Projects Agency and the USENIX Association for their finan-

cial support. In the course of this research I was supported by DARPA contracts

F29601-87-C-0072 and N00174-91-C-0107, and the 1990-91 USENIX Graduate

Research Scholarship.

viii

Abstract of the Thesis

Stackable Layers:

An Architecture for File System Development

by

John Shelby Heidemann
Master of Science in Computer Science

University of California, Los Angeles, 1991

Professor Gerald J. Popek, Co-Chair

Professor Wesley W. Chu, Co-Chair

This thesis proposes the stackable layers method of file system design. This ap-

proach constructs file systems from a number of independently developed layers.

Each layer is bounded by a symmetric interface, syntactically identical above

and below. Layers combine in stacks, linear or tree-shaped collections, each layer

building on the functionality of those beneath it.

Stackable filing improves file system development in several ways. Stacking

encourages code re-use by building upon already existing layers. Incremental

improvement is possible by substitution of existing layers. The layer interface

is extensible, allowing new operations to be easily added by third-parties. Each

operation is carefully described, permitting existing layers to adjust automatically

to the addition of new operations.

The feasibility of stackable filing is demonstrated by the development of a

prototype layer interface and several file system layers. The performance of multi-

layer stacks is found comparable to that of monolithic file systems. Through

the re-use of existing services, we find development of new filing services with

stackable layers significantly easier than development with traditional methods.

ix

CHAPTER 1

Introduction

1

1.1 Introduction

Modularity is widely recognized as a necessary tool in the management of large

software systems. By dividing software into small, easily managed pieces, mod-

ularity provides advantages in organization and verification throughout the soft-

ware lifespan. Modularity is defined by separate software components (modules)

joined by well defined interfaces.

When modular interfaces are carefully documented and published, they can

also serve as an important tool for compatibility and future development. By pro-

viding a common protocol between two subsystems, such an interface allows either

or both systems to be replaced without change to the other. Improved modules

can therefore be independently developed and added as desired, improving the

computing environment. Interfaces such as Posix.1 [IEE90] and NFS [SGK+85]

are examples of interfaces widely used to provide operating system and remote

filing services.

Because operating systems represent such a widely used service, the develop-

ment of modular systems interfaces there is particularly important. The porta-

bility of application programs utilizing the Posix interface illustrates the utility

of a successful interface. Such programs can execute on the complete range of

today’s hardware, from personal computers to the largest supercomputer.

One would like to see this same level of portability currently present for appli-

cation programs in operating systems themselves. Large portions of an operating

system are hardware independent and should run equally well on any computer.

Such portability has been largely achieved, as exemplified by portable operating

systems such as Unix [RT74].

What has not been achieved to the same extent is portability of major kernel

subsystems. Because of the exacting nature of software, and because of the lack

of modular interfaces within the operating system itself, the Unix kernel has

been slow to evolve to new software technologies. While individual vendors have

adopted new kernel technologies such as Streams [Rit84], new virtual memory

approaches, and new file systems, such additions have only come slowly and at

great expense.

Micro-kernel designs are one approach to kernel modularity. Kernels such

as Mach [ABG+86] and Chorus [RAA+90] divide the operating system into two

parts: a core of memory management, process control, and simple inter-process

communication; and a server (or servers) supporting the remainder of the tradi-

tional operating system, including accounting, protection, file system and network

services, and backwards compatibility. For the case of Mach and Unix, as a fig-

2

ure of merit, the core is on the order of 15% of the total operating system kernel.

This intra-kernel boundary is an important structuring tool, particularly because

it offers a platform on top of which third parties can offer a variety of services.

But this approach does not provide a total solution, as it fails to address the

modularity of the remaining 85% of the system.

File systems, a rich portion of the remaining kernel, are an active area of

research. Many file system services have been proposed, including version man-

agement, user-customizable naming, fast log-structured storage, replication, and

large-scale distributed filing. All of these have well developed prototypes, but

appearance in commercially available systems has been both slow and piecemeal.

Adoption of these new filing services has been slow in part because file systems

are large, monolithic pieces of code with limited internal modularity. Although

recent approaches to file system modularity such as Sun’s VFS interface [Kle86]

allow easy substitution of entire file systems, they do little to support modu-

larity within file systems themselves. As a result, it is not easy to replace or

enhance separate portions of the file system, for example, keeping the physical

disk management and installing a new directory layer.

Another problem with existing approaches to file system modularity is that

they are particularly fragile in the face of change, the very capacity modularity

should support. Evolution of the kernel to more efficient algorithms, and addition

of new file systems have required frequent changes to the interface, resulting in

incompatibility between operating system releases. Frequent change and incom-

patibility has largely discouraged third-party innovation, restricting introduction

of new filing services to the primary operating system vendors alone. This con-

trasts sharply with other operating system interfaces such as the device interface

and graphical user interfaces, where standard interfaces have allowed competition

and rapid development of a wide array of services.

A better solution to filing service design is needed. Perhaps techniques used

in the structuring of other large software systems can be applied to this context.

Unix shell programming is one example of a successful development environ-

ment. Individual programs are easily connected by a flexible, standard interface,

the pipe. Programs can be combined quickly and easily in the shell with a simple

programming language. New programs are widely and independently developed

by a number of vendors. These features combine to provide an excellent environ-

ment for rapid prototyping and development.

This approach to software modularity has also been applied to kernel-level

subsystems. The Streams system is Ritchie’s redesign of Unix terminal and

network processing. Streams’ syntactically identical interface between a num-

3

ber of small, independent modules encourages the construction of protocol stacks

custom built to handle the task at hand. As a result, third parties have built

commercial quality layers that integrate well with other protocol modules. This

modular approach allowing multiple, independent groups to contribute to commu-

nications facilities is one of the reasons Unix is the preferred base for networking

and distributed systems software in engineering and commercial use1.

This research seeks to apply the principles of stackable layering to file sys-

tem development. In particular, we envision a situation where a user’s filing

environment is composed of a number of independently developed layers. These

layers are bounded by extensible interfaces, allowing compatible addition of ser-

vices. Flexible configuration and a symmetric interface allow experimentation

and composition of file system stacks. The central thesis to this work is that

this layered environment will dramatically improve the file system development

environment, making it easier to provide new filing services to users.

The true test of this hypothesis is the design, construction, and use of a

stackably layered file system. This document describes issues involved in the

design of such a file system and reports experience in the use of these principles

in the development of a stackable file system and layers.

1.2 Related Work

Related material derives primarily from symmetric module design, general file

system structuring, and some recent work on stackable file systems. A more

detailed study and comparison to this work can be found in Chapter 7.

1.2.1 Symmetric interfaces

Unix shell programming with pipes [RT74] is now the widest use of a sym-

metric interface. Pike and Kernighan describe this work for software develop-

ment [PK84]; other applications are as rich as text formatting [KP84] and music

processing [Lan90].

Ritchie’s Streams paper [Rit84] is the classic application of these principles

to kernel structuring. Ritchie applies symmetric layering to the terminal and

network subsystems of research versions of AT&T Unix. Such work has since

been adopted by a number of Unix flavors.

1In fact, commercial systems such as Novell’s Netware-386 have adopted the Streams frame-

work, presumably for similar reasons.

4

The x-kernel [HP88, HPAO89] is a new kernel designed originally to provide

customized network protocols. Using a symmetric interface for all kernel services

(“everything is a protocol”), great flexibility in protocol selection and combina-

tion is provided. Run-time protocol selection also allows use of the most efficient

method available.

1.2.2 File system structuring

Dijkstra describes early approaches to modular operating system design [Dij67,

Dij68]. Madnick and Alsop [MA69], and later Madnick and Donovan [MD74]

discuss modular and layered approaches to file system design, concluding with a

six-layer design. The design of Unix adopted simpler approaches, resulting in a

two layer design (file system and physical devices) [Bac86].

To provide for multiple file systems, several “file system switch” mechanisms

have been developed [Kle86, RKH86, KM86]. These typically found quick use in

the support of network file access [SGK+85, RFH+86] and have since been applied

to the support of other file systems [Koe87]. None of these approaches provide

explicit support for stacking or extensibility, but all provide basic modularity.

NeFS describes one approach to an extensible file system interface [Sun90],

focusing exclusively on remote file access. An alternative to the NFS protocol for

remote access, NeFS allows remote execution of PostScript-like programs for file

access.

1.2.3 Stackable file systems

Sun Microsystems applied the vnode interface to build two layer file system stacks

in their loopback and translucent file systems [Hen90]. Internal to the operating

system, stacking is used to support device special files.

More recently, Rosenthal has experimented with a modified vnode interface to

provide dynamic file system stacking [Ros90]. This work is discussed extensively

in Section 7.2.

1.3 Overview of the Thesis

Central to a layered design is the interface connecting the layers. Chapter 2

discusses the design of such an interface, and the following chapter describes

the implementation 405 interface, a stackable interface developed at UCLA. A

symmetrically layered file system enables new development techniques; these are

5

discussed in Chapter 4. Chapter 5 illustrates the use of these approaches in

several layers developed using the 405 interface. Chapter 6 evaluates the use of

our layered file systems, both in terms of run-time costs and development effort.

Related work is reviewed in Chapter 7, followed by conclusions and suggestions

for future research.

6

CHAPTER 2

Interface Design

7

The ultimate success of a file system interface depends on its ability to support

and encourage the growth required by future filing environments. From our ex-

periences with stackable file design, we have identified a number of characteristics

we feel critical to future development. A flexible, layered interface must be:

Extensible. The interface must be very easy to extend and evolve as require-

ments change, even in the face of multiple third party changes.

Stackable. Composing file systems from several layers promotes code-reuse and

portability. The interface should facilitate stacking. Trees should also be

possible, with both layer fan-in and fan-out.

Late bound. Stack composition should be easy and flexible. Stack definition

should be possible at run-time without source code changes. New layers

should be easy to add.

Fine granularity. Stacks should be configurable at a fine granularity for max-

imum flexibility. Each file and process should be allowed a different stack

and view of stacks. Management of stack configuration should be easy.

Well defined. All characteristics of the interface should be detailed and avail-

able at run-time. Information should be sufficient, for example, for layers

to move operations between address spaces, and for third party additions

to blend seamlessly with existing systems.

Efficient. A file system interface is in the tight loop of computation; performance

is critical. Multiple thin layers maximize code reuse, but also require very

low overhead.

Rich in flow of control. Interaction of different layers in a distributed file sys-

tem often requires non-traditional flow of control. The interface should

support “upcalls” and a rich flow of control.

Opaque. Layers should be opaque; all access to layer details must be through

well-known operations.

Unlimited. There should be no arbitrary limits on the number or kinds of layers

and operations.

Each of these characteristics represent different dimensions in layer interface

design. The remainder of this chapter examines each of these in turn. The

following chapter considers a prototype interface, selecting one point in the design

space.

8

Release Vnode fields Vnode bytes Operation count

SunOS 2.0 (1985) 11 32 24

SunOS 4.0 (1988) 14 40 29

SVR4/no fill (1989) 11 40 37

SVR4/with fill (1989) 19 72 69

Rosenthal’s prototype (1990) 6 20 39

Table 2.1: Rosenthal’s evaluation of vnode interface evolution in SunOS

(from [Ros90]). Fill indicates space left in SVR4 for future expansion; Rosen-

thal’s prototype is discussed in Section 7.2.

2.1 Extensibility

An interface must be extensible, allowing addition of new operations as needed. If

a software system is anticipated to have a multi-year lifespan, it can be expected

that its surrounding environment will change one or more times. In addition, new

features of a software system will often require additions to existing interfaces.

Both of these problems are aspects of extensibility.

Examples of these problems abound in software design. Rosenthal examined

the gradual evolution of the SunOS file system interface in [Ros90]. He found

significant changes to the interface in every major operating system release. Ta-

ble 2.1 shows his comparison of changes.

Rosenthal’s example shows the reality of change in software development.

In spite of the inevitability of change, a number of barriers to change exist,

making evolution difficult. Often complete source code must be available to

permit change; facilities of most operating systems do not support additions

or extensions. On the other hand, because of market pressure and desire for

new features, change must take place. One approach to minimize the disruption

resulting from change is to minimize how often change is allowed. For example,

one might disallow local operating system modification, using only infrequent

upgrades from the workstation manufacturer. Practically speaking, widely used

operating system modifications derive only from a few major vendors and research

institutes.

What are the problems that result from this traditional approach to change

and change management? Two sorts of problems appear: problems in develop-

ment without change, and problems of adjusting to change when it eventually

arrives.

9

Great efforts are made to avoid the effects of change. One approach to pre-

venting change is to require that everyone use the same version of software; no

change or deviation is permitted. While this approach works for small workgroups

for short periods of time, it fails as scale and duration increase. The longer a

configuration is frozen, the greater users’ demands for new software. As the user

population grows from tens of machines to hundreds or thousands, the different

goals and requirements of multiple administrative domains force different software

configurations.

The reason for change is nearly always support for new functionality. Accom-

modation of new hardware or software in an environment prohibiting change is

very difficult. The more different a new device or package is (and so presumably

the more interesting), the less likely it is that support will be possible without

change. Consider, for example, write-once optical media. Although they offer the

desirable characteristics of very large and persistent storage, there is little hope

of exploiting their full potential with unmodified system software. Therefore, if

change is to be disallowed, availability of new tools is also effectively prohibited.

Often, pressures to adopt new tools force their use before change can be

fully accommodated. If existing interfaces must remain unchanged, the only

alternative is to create an additional, parallel interface. While this approach

allows adoption of new technology, it also complicates the environment. Such

work needlessly duplicates existing efforts as similar goals are accomplished in

different ways. In the long run, this ad hoc approach to evolution will likely

cause difficulties in maintenance and further development.

Eventually, change must occur. In operating systems, change is typically

restricted to the computer manufacturer in occasional, perhaps annual, systems

software releases. While this policy of change delays problems resulting from

change to an occasional event, eventually these difficulties must be faced.

Because the authority of operating system change is vested largely in the work-

station manufacturer, potential for third party enhancement is greatly restricted.

Unavailability of source code, incompatibility with other third party change and

even vendor-supplied updates together discourage third party innovation. Finally,

the methods used by manufacturers to improve services are often not available to

third parties. As a result, third party modifications suffer performance penalties

compared to vendor supplied improvements, further handicapping independent

development.

As discussed in the introduction, support of third party software is critical

to the timely development of new capabilities. These problems discourage third

party development, slowing the advancement of the operating systems field as a

10

whole.

An extensible interface addresses a number of the problems resulting from

change. Controlled change is allowed, permitting the use, experimentation, and

rapid adoption of new hardware and software. While change is permitted, it

will be provided in a regulated, consistent way. Software must then gracefully

adapt to its environment, both as a result of the presence of unexpected, new

extensions, and the lack of expected support.

Explicit capacity for change will support the development of new software.

To maximize the impact and availability of new services, modifications must be

possible with as little disruption of existing software as possible. Ideally, a new

software module could be added without source code changes to it, or any other

module. Furthermore, the services offered by third party modules should not

have any undue penalty for being developed independently.

Extensible operating system services have been uncommon, but user level pro-

grams supporting extensibility have proven effective. The Internet File Transfer

Protocol [Bus71] and Apple Computer’s HyperCard [App88] illustrate the bene-

fits of extensibility in gradual software evolution and rapid support of new tech-

nology.

The flexible design of the Internet File Transfer Protocol, FTP, has allowed

its gradual evolution with the addition of new commands (for example, [PR85]).

The scope of the Internet, where hundreds of computer architectures support

thousands of software revisions across hundreds of thousands of hosts, makes the

concept of “one consistent software version” an impossibility. In such an environ-

ment, gradual extensibility is a requirement. FTP’s capabilities for handling or

rejecting new commands have allowed incremental adoption of new capabilities.

Another example of software extensibility is Claris’ Hypercard for the Apple

Macintosh. Hypercard provides basic hypertext services, supporting graphics and

text through a scripting language, HyperTalk. HyperTalk is extensible; users

can add new commands via its “XCMD” feature. This extensibility is critical

to the rapid use of Hypercard to a number of applications outside its original

domain, including electronic bulletin board support (with extensions to access

serial ports and modems) and video-disc and CD-ROM support (extensions drive

the appropriate hardware devices).

11

2.2 Stacking

File systems frequently implement very similar abstractions. Most file systems

must coordinate disk access or file and directory allocation, for example. File

system stacking is an approach to file system modularity that allows a file system

to be decomposed into its component abstractions. Rather than each file system

providing all user services with a monolithic implementation, separable services

are placed in individual layers. With careful design, each abstraction is present

in a separate layer and can then be reused in the implementation of other file

systems. Improved services can also be substituted into existing stacks.

The key characteristic of a stackable layer is that it possess the same interface

above and below. Each layer is implemented based on certain existing services;

its interface with these services is its “below” interface. The layer then exports its

“above” interface to its users. When these interfaces are syntactically identical, it

becomes possible to combine these interface arbitrarily in a “stack”. Given such

a stack, one can construct “filter” layers which add new functionality. Because a

filter layer has a symmetric interface, it could be inserted into existing stacks at

any layer boundary.

To illustrate file system stacking, consider a brief example. A conventional

disk file system might be provided by a stack of three layers. A base layer im-

plements raw disk access. A middle layer provides files in a flat, fixed namespace

(inode-level access), and the top layer provides hierarchical directory services.

Figure 2.1 illustrates such a stack. With stackable layering, a comprehensive

user-centered naming service might replace the hierarchical directory layer while

still making use of the low-overhead file access layer, or a compression layer might

be inserted between the directory and file layers to improve the apparent storage

space.

Support for stacking is an important consideration when designing an in-

terface. Although stacking alone is not difficult to provide, stacking with an

extensible interface requires more care. Consider Figure 2.1 again. If the in-

terface supported by the file layer were extended to provide an atomic commit

service, for example, this interface should be immediately available above the

directory layer. This must be possible even if source code to the directory layer

is unavailable.

File system stacking is actually a special case of more general layering. In

addition to simple linear stacking, the general case of file system trees should be

possible. As an example of a file system tree, Figure 2.2 illustrates one possible

implementation of disk mirroring. A mirroring layer duplicates all file system

12

OS

compression
 layer

 file
layer

 disk
layer

OS

improved
 naming
 layer

 file
layer

 disk
layer

OS

directory
 layer

 file
layer

 disk
layer

directory
 layer

Figure 2.1: On the left is a simple file system stack. Improvements are made by

layer replacement and insertion.

operations on two lower-level file systems. Such a mirroring layer could be im-

plemented without detailed knowledge of the underlying file system type in a

stackably layered environment.

File system stacking provides a unique framework for code reuse. In addition,

it also offers the possibility of code substitution. When several layers provide

similar semantics, one can be substituted for another. This substitution can be

used to improve portability. Imagine a file compression service built over the

BSD Fast File System layer. If this service were combined with the FFS, it

would be portable only as an integral part of that file system. If it was instead

built as an independent layer, it could easily be built to operate correctly over

other file systems similar to the FFS, such as the System V file system or a

vendor-customized file system.

Chapter 4 describes applications of file system layering in more detail. The

uses of stacking for file system modularity and code reuse make it a key part of

an improved file system development environment.

13

OS

directory
 layer

 disk
layer

 file
layer

 file
layer

 disk
layer

mirroring
 layer

Figure 2.2: A tree of file system layers to provide disk mirroring.

2.3 Stack Configuration

File system stacking is only as useful as it is easy to use and configure. Stack

configuration spans a spectrum from the very static to the very dynamic. In gen-

eral, more dynamic approaches offer more possible applications with increased

flexibility; they also present the potential for more overhead and management

difficulties. A classic exchange of efficiency for flexibility, parallels to this spec-

trum exist in fields such as programming language design.

Flexibility of stack configuration varies in several aspects. First, the granular-

ity of the object being configured in a stack may vary. Stacks may be customizable

at the per-process or per-file level, on a subtree by subtree basis, or perhaps each

kernel requires a particular stack.

When stacks are specified is a second aspect of configuration. In original

versions of Unix, the choice of file system was hard-coded into the kernel. The

vnode interface allows addition of new file systems when the kernel is configured

and selection of file system type when file systems are mounted. Stacks could

be defined at either of these points. File open is a natural time to specify stack

contents, or one might even allow stack contents to change during file use.

Consistency in configuration is a final aspect to be considered. Are all users (or

14

processes, process groups, or hosts) required to see the same stack configuration

at all times, or are multiple independent views of stack composition permissible?

Greater configuration flexibility is important, because it allows file system

stacking to be more widely used. The ability to specify stacks on a file-by-file basis

would provide many of characteristics of an object oriented filing environment, for

example. In practice, this flexibility must be traded off against added run-time

overhead, management cost, and implementation complexity of more dynamic

solutions.

The capability of running several file systems concurrently prohibits kernel-

granularity file system configuration. The subtree1 granularity offers a convenient

existing approach to file system configuration. Many times, however, the flexi-

bility of having individual files separately configured would be an advantage.

File system configuration by code modification has always been available.

Much more attractive is the ability to configure stacks at run-time in the same

way file systems are mounted. This allows a system administrator to customize

file system configurations without halting the machine, allowing much greater

freedom to experiment with different designs. More flexible still is the ability

to define a stack when a particular file is opened, although this presumes that

stacks are configurable on a file-by-file basis. Finally, one can imagine stacking a

“measurements” layer on a stack to collect usage patterns, even while files are in

use.

Configuration consistency has perhaps the clearest resolution. While it is

often good to ensure a consistent appearance of service to all users, there are

many times when different views of a stack are desired. File system backup, for

example, might directly read the disk rather than operate at the directory level.

Section 7.2.2 discusses consistency options in more detail. With the exception of

completely semantics free layers, there are few cases when a program would wish

its current view of an open file stack to change.

The flexibility of late, fine-granularity binding holds the promise of increased

power, but also increased overhead. An implementation must trade these factors

against each other. The minimum level of stackable service provides configuration

on a file system basis at mount-time. Ideally, file-by-file configuration as files are

opened would provide an “object oriented” environment.

1Subtree here refers to a subset of the tree-structured Unix file system name space. In

traditional Unix terminology a subtree is referred to as a file system which corresponds to a

disk partition.

15

2.4 Interface Definition

Most kernel interfaces are described only by paper documentation, relying on pro-

grammer vigilance about the types and contents of arguments. While traditional

documentation is useful in the design of a new file system layer, it is insufficient

if the interface connecting layers is extensible. When joined by an extensible in-

terface, all documentation must be considered perpetually out-of-data, since new

layers may add operations at any time.

Rather than restrict documentation of the layer interface and operations to

the layer designer, an extensible layered interface requires that all interface details

be formalized and available to the layers themselves. Meta-data about individual

interface operations is necessary to allow generic layers to react to all possible

operations at run-time.

By providing the specification of each operation in a machine-interpretable

form, layers do not need hard-coded information about each operation. Instead,

layers can often utilize meta-information to handle new operations in a generic

way. For example, a network transport layer might use information about an

operation’s arguments to pass that operation to another machine via some RPC

protocol.

Run-time description of an interface is critical in a stackable environment

where extensibility is supported, and so a comprehensive interface definition will

be an important part of any file system development approach utilizing these

techniques.

2.5 Efficiency

Reuse of layers is enhanced when each layer encompasses few abstractions. If layer

crossing overhead is at all significant, modular filing environments will either

suffer serious performance penalties (relative to non-layered environments), or

layers will be combined, making layer reuse more difficult. The layering strategy

must be very efficient so that it does not otherwise impact the file system design.

2.6 Flow of Control

File systems are for the most part passive, responding to user actions. Perfor-

mance can be improved by optimizing for this dominant case, bringing it as close

to the cost of a procedure call as possible.

16

Occasionally, the file system should take a more active role. An example of

this is raw disk I/O. Rather than wait for the physical disk read to complete,

the executing process can suspend itself, allowing other processing to be done.

When the read completes, an interrupt will signal the original process that it may

resume.

This interrupt is a form of “upcall” [Cla85], an operation which begins at a

lower level of system software and proceeds towards the user. A more general

term for upcalls is non-linear flow of control2, since one can also imagine need to

call services at “parallel” levels.

Upcalls are often needed in distributed file systems. For example, to maintain

cache consistency, the file server might call upon clients with invalid data pages,

requesting them to purge their cache. This approach was taken by the Andrew

File System. An alternative method of consistency control might have the clients

communicate among themselves, making “sideways” upcalls. This method has

been explored in the consistency layer described in Section 5.6. These actions do

not proceed naturally down a stack of layers, but instead naturally progress up

and sideways between layers.

In both cases, these upcalls would be occurring between different layers of a

layered file system, and so it is natural to consider upcalls as an extension of the

basic layering interface. Providing this kind of interaction within the framework

of a file system interface minimizes the number of separate constructs required

in development, and non-linear flow of control should be a part of a complete file

system interface.

2.7 Opaqueness

A fundamental tenet of layering is information hiding. To maximize information

hiding, layers should be treated as completely opaque. All access to a layer

should be restricted to its provided operations. This has several implications for

the design of the kernel environment.

For a file system interface to be effective, it must have complete control over

the status of the file system. The remainder of the kernel should not intrude

on the private contents of file system data structures, but should restrict all

interaction to provided operations.

Also, the kernel should try not to second guess the file system. Many upper-

level kernel optimizations make assumptions about the status of a file system

2Both terms will be used interchangeably here.

17

layer. These optimizations break when confronted with radically new layers.

These two observations are examples of a broader principle, that of under-

specification3. To allow maximum freedom in layer use, other layers and the

kernel should assume as little about layers they call as possible. By accessing

the private contents of data structures directly, the kernel is assuming that these

data structures and their format will not change. Optimizations based on vnode

type also assume that this type information will not change. In either case, this

same determination can be made by the layer itself, allowing the layer additional

control over its destiny.

2.8 Summary

This chapter outlines the characteristics desirable in a stackable file system inter-

face. The interface must be extensible to support new filing services; stackable

to allow them to be constructed from existing facilities. Late binding and fine

stack granularity aid the flexibility of stack configuration, and a careful stack def-

inition allows layers to adapt to interface variations. Rich flow of control allows

the interface to be applied to a wide variety of situations. These characteristics

should be provided without arbitrary limitations while still supporting excellent

performance. The next chapter will discuss a prototype interface designed with

these issues in mind.

3This term was first coined by Hutchinson and Peterson in [HP91].

18

CHAPTER 3

Interface Implementation

19

The previous chapter described a number of new ideas about how file systems

should be constructed. Chief among these is the idea that stackable file system

design can promote file system development. To verify these ideas, we set out to

experiment with file system layering by constructing and using file system stacks.

The benefits of file system modularity have resulted in the adoption of a

several different file system interfaces. Several are now available commercially,

including Sun Microsystems’ Virtual File System interface (VFS, [Kle86]), Digital

Equipment Corporation’s Generic File System (GFS, [RKH86]), and AT&T’s File

System Switch (FSS). Each separate the implementation of the file system from

the remainder of the kernel, allowing different abstractions to be accessed through

a standard interface.

The initial impetus for the adoption of modular file systems was often re-

mote file access. The VFS interface was created to support Sun’s Network File

System (NFS, [SGK+85]), and AT&T’s FSS was joined by their Remote File

Sharing [RFH+86] package. This modularity has also proven useful in the sup-

port of other filing services. For example, DEC’s GFS was used to support several

different file system formats [Koe87].

Ficus is a distributed file system supporting file replication for reliability,

performance, and scale [GHM+90, Guy91]. Development of Ficus begin in 1989 at

UCLA, where it has served as a testbed for a number of new file system concepts.

For reasons of modularity and portability, Ficus was built with a standard file

system interface. Because of wide industry acceptance and availability, Sun’s

vnode interface was selected. To leverage existing work and to test our ideas,

Ficus was structured from stackable layers. Ficus was stacked over existing file

systems for storage and remote access.

As work on Ficus progressed, it quickly became apparent that long term use

of the vnode interface would be impossible. There was no compatible way to add

operations to this interface. Replication requires a more flexible protocol than the

vnode interface provides; no clean way is available to integrate new replication

operations with existing file system layers. On the other hand, the modularity

and performance of the vnode interface were quite good.

Our initial work with the vnode interface encouraged us to use it as a starting

point for an improved file system interface. To support stacking and extensibility,

though, we found it necessary to change the interface in several ways. This

chapter describes the new stackable interface we developed, the 405 interface1. It

1The 405 Freeway is a major artery in West Los Angeles. It runs from Orange County to

the northern San Fernando valley, and is the primary passage for tens of thousands of people

each day through the Santa Monica mountains.

20

begins with a brief review of the vnode interface, and then describes the significant

changes made to support stacking and extensibility.

3.1 The Existing Interface

To meet the demand for several file systems within the same kernel, the file

system switch was developed. Sun’s vnode interface [Kle86] is a good example of

this approach, separating file systems from the remainder of the kernel with an

object-oriented interface2. Versions of the vnode interface are provided in several

variants of Unix, including SunOS, System V Release 4, and 4.3-Reno BSD. The

interface has been successful in supporting a number of file systems, including

the Berkeley Fast File System, the System V file system, NFS, and a variety of

other file system services.

The vnode interface is a method of abstracting the details of a file system

implementation from the majority of the kernel. The kernel views file access

through two abstract data types. A vnode identifies individual files; the vfs

describes groups of files (filesystems or disk partitions). A small set of file types

is supported, including regular files, which provide an uninterpreted array of bytes

for user data, and directories, which list other files. Directories include references

to other directories, forming a hierarchy of files. For implementation reasons, the

directory portion of this hierarchy is typically limited to a strict tree structure.

Figure 3.1 shows the tree forming a typical file system namespace.

For configuration purposes, sets of files are grouped into subtrees 3. One sub-

tree, the root subtree, is automatically installed upon system initialization. Other

subtrees are added to the file system namespace by a mounting process.

Mounting is the process of adding new collections of files into the global file

system namespace. Figure 3.2 shows two subtrees, the root subtree, and another

attached under /usr. Once a subtree is mounted, name translation proceeds

automatically across subtree boundaries, presenting the user with an apparently

seamless namespace.

2DEC’S GFS is quite similar to Sun’s vnode interface in implementation. Both select file

system operations by indirect function calls through an operations vector. The differ primarily

in the set of functions offered by the interface.

Technical details about AT&T’s FSS are not available outside of proprietary documentation,

but selection of Sun’s vnode technology for inclusion in System V Release 4 suggest that it does

not offer significant technological advantage.
3Traditional Unix literature uses the much overloaded term “file system” in place of subtree.

21

usr
etc

vmunix

bin lib

cat ls
libc.a

passwd

directory
file

Figure 3.1: A typical file system namespace.

bin lib

cat ls
libc.a

usr
etc

vmunix

passwd

directory
file
subtree

Figure 3.2: A namespace composed of two subtrees.

22

open access rmdir fid

close lookup readdir getpage

rdwr create symlink putpage

ioctl remove readlink map

select link fsync dump

getattr rename inactive cmp

setattr mkdir lockctl realvp

Figure 3.3: Operations supported in SunOS 4.0.3.

All files within a subtree typically have similar characteristics. Traditional

Unix disk partitions correspond one-to-one with subtrees. When NFS is em-

ployed, each collection of files from a remote machine is assigned a corresponding

subtree on the local machine.

Data encapsulation requires that abstract data types be manipulated only by

a restricted set of operations. Vnodes, the abstract data type for “files”, each

support a specific group of operations, although the exact set varies according

to the particular implementation used. Vnode operations typically resemble the

system call-level file system interface (open, close, read, write, link, etc.). Fig-

ure 3.3 lists the vnode operations supported in the SunOS 4.0.3 version of the

vnode interface.

Different file systems typically require completely different implementations

of each vnode operation. Reading a file from a local disk is quite different from

fetching data from a remote file system, for example. As an abstract data type,

the kernel must treat all vnodes equivalently as opaque data structures. The

kernel should not be forced to select explicitly the correct implementation of a

particular operation for a particular vnode type.

To allow this generic treatment of vnodes, binding of desired function to

correct implementation is delayed until run time. This is implemented in standard

C by associating with each vnode type an operations vector identifying the correct

implementation of each operation for that vnode type. Operations can then be

invoked on a given vnode by looking up the correct operation in this vector. In

C, this is implemented as an indirect function call through the correct element of

the vector. This approach is identical to that typically used to implement C++

virtual class methods [Str86].

Some file system stacking is possible with the standard vnode interface us-

23

ing the mount mechanism. Sun Microsystems’ NFS [SGK+85], loopback, and

translucent [Hen90] file systems take this approach. The private data of the

mount command identifies the lower layer of the stack, the mount command

creates the new upper layer and connects it into the file system name space.

3.2 Extensibility in the 405 Interface

Lack of interface extensibility is a critical problem with existing file system in-

terfaces. Many situations arise where the file system interface must be modified

to pursue new ideas. Evolution of the kernel in the face of compatibility with

existing file systems requires extensibility, as does support of radically new file

systems in standard kernels.

The problem of extensibility in the vnode interface stems from the conventions

used to define the interface itself. It is simply assumed that all file systems

in a given kernel are designed around the same set of operations. When a file

system needs to add operations, it has no method to coordinating this desire with

other file systems, or with the kernel as a whole. In particular, the only formal

definition of the operation supported by this interface (the vnodeops structure

definition itself) is lost at compile time and cannot be regenerated; there is no

way of determining compatibility between the interface supported by the kernel

and that supported by each file system.

This problem of extensibility is solved in the 405 interface by maintaining in-

terface definition information until execution, and then dynamically constructing

the interface. Each file system includes a list of all the operations it supports.

At system initialization, the union of these operations is taken, yielding the list

of all operations supported by this kernel. This set of operations is then used to

dynamically define the structure of the operations vector by assigning each op-

eration a unique index in this vector. These two steps construct the operations

vector automatically, allowing it to adapt to changes in the set of supported oper-

ations. Given the format of the operations vector, a vector customized to each file

system can then be constructed. These vectors list the implementation of each

operation for that particular file system so that when operations are invoked on

the corresponding vnode, the correct implementation will be selected4.

New file systems can be added to a kernel with a simple reconfiguration. The

addition of a file system has the potential to add new operations, which must be

4File systems may actually support several different vnode types, each with a separate (but

usually related) set and implementation of operations. Directories and files, for example, are

best supported with different implementations of several operations.

24

accommodated automatically. This fact has a profound impact of the nature of

the interface. While with a traditional, fixed interface the file system designer

could assume that all cases (operations) are explicitly handled, an extensible

interface requires broader considerations in design because new operations can

be added at any time. File systems must be able to react to new operations in

a consistent manner. To handle new, “unsupported” operations, each file system

supports a default operation. This routine will be invoked to handle all operations

not otherwise provided by a file system. In a basic file system, this operation

may simply return an error. More sophisticated file system layers should use the

routine to pass unsupported operations to lower layers. Details of how this can

be done are provided in Section 3.4.

The new structure of the operations vector also requires a new method of

operation invocation. The calling sequence for new operations replaces the static

offset into the operations vector of the old interface with a dynamically computed

new offset. Because of careful design, these changes have very little performance

impact, an important point in something that will be as frequently employed as

an inter-layer interface. Section 6.1 analyses performance of the 405 interface in

detail.

3.3 Stack Creation

The effort involved in developing a production-quality file system is far from small.

Production file systems typically amount to about 10,000 lines of C code, and

even simple file systems amount to several thousand lines of code5. As discussed

in Chapter 2, a stackable file system design has the potential to reduce this effort

by allowing reuse of existing code.

This section discusses how stacks can be formed. In the prototype interface,

stacks are configured at the filesystem granularity, and constructed as required

on a file-by-file basis.

3.3.1 Stack configuration

Section 3.1 described how a complete Unix file system is built from a number

of individual subtrees by mounting. Subtrees are the basic unit of file system

configuration; each is either mounted making all its files accessible, or unmounted

and unavailable.

5Measurements from SunOS 4.1: ufs, 11667; nfs, 9982; hsfs, 3665; pcfs, 3627 raw lines of

code.

25

/
layers

ufs

crypt.raw

dev

sd0a

OS

UFS
layer

user

Figure 3.4: Mounting a UFS layer.

Let us review in more detail how Unix uses the mount mechanism to bind sub-

trees into the global name space. Figure 3.4 illustrates how one might add a new

UFS disk partition. A mount system call is issued with the file system type (UFS),

the identity of the lower-level object (/dev/sd0a, a block-special device represent-

ing the disk drivers), and the name for the new file system (/layers/crypt.raw

in the example). Users may then access files in the new file system by access-

ing files from the /layers/crypt.raw directory; all files beneath this level are

assumed to be UFS files from that disk partition.

The 405 interface overloads this mount mechanism to serve also as a layer

configuration mechanism. Layers are configured on a subtree level granularity.

The Unix mount command serves to create each layer of a stack, one-by-one

building the layers of a multi-layer stack. Typically, stacks are built bottom up.

As each layer is mounted to a name, the next higher layer uses that name to

identify its “lower layer neighbor” in initialization.

To build on the example of mounting, Figure 3.5 illustrates how an encryp-

tion layer could be pushed on to an existing UFS layer. Similar to mounting

normal file systems, the layer type (encryption), the name of the lower-level

object (/layers/crypt.raw, the UFS layer), and the name for the new layer

(/usr/data) all must be specified. Files opened through /usr/data will then

gain the benefits of services provided by the encryption layer.

File system stacks are not necessarily linear. Stacks with multiple lower layers

(trees) are also possible. File system treeing is particularly useful in the support

of replication. Figure 2.2 (page 14) shows how a file system tree of layers might

be used to build a disk mirroring service. When creating a tree with multiple

lower layers, the names of each lower level layer must be provided to the mount

26

/
layersusr

ufsencrypt
 fs

crypt.raw
data

OS

encryption
 layer

user

UFS
layer

Figure 3.5: Stacking an encryption layer over the UFS.

call.

Stack construction does not always proceed from the bottom up. Sophisti-

cated file systems may automatically create lower layers as necessary. The Ficus

distributed file system takes this approach in its use of volumes. Volumes are

subtrees with all mounting handled automatically by Ficus. So that all sites

maintain a consistent view about the location of each volume, volume mount

information is maintained on disk at the mount location. When a volume mount

point is encountered during path name translation, the corresponding volume is

automatically located and mounted.

3.3.2 File-level stacking

While stacks are configured at the subtree level, most user actions take place on

individual files. Files are represented by vnodes, with one vnode per layer.

When a user opens a new file in a stack, a vnode is constructed to represent

each layer of the stack. User actions begin in the top layer of the stack and are

then forwarded down the stack as required. If an action requires creation of a new

vnode (such as creating or opening a new file), then as the action proceeds down

the stack, each layer will build the appropriate vnode and return its reference

to the layer above. The higher layer will then store this reference in its private

data. Figure 3.6 shows a two-level stack of vnodes. A file system stack with trees

is handled similarly, the layer with several lower layers stores references to each

27

encryption
layer vnode

ufs vnode

user

Figure 3.6: A two-level stack of vnodes.

lower-level layer in its private data.

An important point of this method of stack creation is that the only connec-

tions between layers are the vnode references, the same interface used for normal

file access in the kernel. Because the same interface is used to bind layers as to ac-

cess files from the rest of the kernel, no special provision need be made to perform

operations between layers. The same operations used by the upper-level kernel

can be used between layers to access layered file system functionality. Layers also

treat all incoming operations identically. There is no need to try to distinguish

calls from a higher layer from calls invoked by the user.

3.4 Stacking and Extensibility

One of the most powerful features of a stackable interface is that layers can be

stacked together, each adding functionality to the whole. Often layers in the mid-

dle of a stack will pass most operations to a lower layer unchanged. For example,

although an encryption layer would encrypt and decrypt all data accessed by

read and write requests, it would not need to modify directory operations such

as link and readdir. But since the inter-layer interface is extensible, how can

an intermediate layer be prepared to forward all operations down? Figure 3.7

illustrates this problem. The pair of Ficus layers each add operations to support

replication, but between them a standard transport layer (NFS) is placed. How

28

can replication-specific operations be passed through NFS without requiring NFS

source code changes? This section discusses methods to forward operations in an

extensible environment.

One way to pass operations down to a lower level is to implement, for each

operation, a routine which explicitly invokes the same operation in the next lower

layer. This approach does not work when the interface is extensible, since new

operations can be added at any time. This approach requires that each addition

of a new operation be accompanied modification of all existing layers. This both

discourages the creation of new layers and new operations, and it also make it

impossible to employ unmodified third-party layers in the middle of new stacks.

Since third-party layers must often be distributed as object code only (to protect

development effort), such layers will often be unavailable for modification.

What is needed is a single bypass routine which can forward new operations

to a lower level. Default routines discussed in Section 3.2 provide the capability

to have a generic routine handle unknown operations. Unfortunately, existing

interfaces make it impossible to implement such a routine. To handle multiple

operations, a single routine must be able to handle the different numbers and

kinds of arguments used by different operations. It must also be possible to

identify the operation taking place. Neither of these characteristics are possible

with existing interfaces where operations are implemented as standard function

calls.

The 405 interface accommodates these characteristics in two ways. First,

rather than passing operation arguments as parameters of the function imple-

menting the operation, they are grouped into a structure and a pointer to this

structure is passed. This allows arguments to be collectively identified by a

generic pointer, and it avoids repeatedly copying arguments when passing through

several layers of a file system stack.

Second, a new argument is added to each operation. This argument contains

meta-information about the operation: what operation it is, the number and

kinds of its arguments, and so on. This description information and the struc-

ture extend the object-oriented style provided by vnode-based file systems to the

implementation of the interface itself. The original interface gave the user the

ability to perform operations on a vnode without respect to its type; this mod-

ification allows a bypass layer to forward an operation to a lower level without

respect to the operation involved.

These characteristics make it possible for a simple bypass routine to forward

all operations to a lower layer in the 405 interface. We expect all file system

layers to support such a bypass routine.

29

system calls

user

OS

NFS

UFS

Ficus
physical

Ficus
logical standard−ops replica−ops

standard−ops replica−ops

standard−ops ? ? ?

....

....

operations vectors

Figure 3.7: The problem of passing new operations through an old layer.

30

3.5 Inter-machine Operation

A transport layer is a stackable layer which transfers operations from one address

space to another. The object-oriented flavor of this enhanced interface allows

remote access to be network transparent to the programmer. Because vnodes

for both local and remote file systems accept the same operations, the program-

mer may use either at any time. This transparency allows novel approaches to

configuring layers as described in Sections 4.7 and 4.8.

Inter-machine operation preserving network transparency poses several prob-

lems. How can two machines transparently interact if they are configured to

use different file systems and different sets of operations? What happens when

two machines have different formats for basic data types such as integers and

floating point numbers? What about compilers with different methods of struc-

ture padding? What about operations handling variable sized or dynamically

allocated data?

For two hosts to inter-operate, it must be possible to identify each desired op-

eration unambiguously. In the past, a well defined RPC protocol enumerating a

fixed set of operations insured compatibility [Sun89]. This approach is incompat-

ible with the principles of extensibility required by new file system development.

Instead of a fixed set of operations, each operation in the 405 interface is assigned

a universally unique identifier when it is defined. Inter-machine communication

can then use these labels to identify known operations and reject unknown ones.

For transparency to be preserved with an extensible interface, it must be

possible for transport layers to forward new operations to other address spaces,

just as bypass routines forward operations to lower layers in the same address

space.

Moving operations between address spaces requires that the type of each argu-

ment be known so that a network RPC protocol can marshal that operation and

its arguments. Network marshaling accommodates translation between different

fundamental data types, including byte order and data alignment. This informa-

tion is part of the meta-data carried along with each operation, and it must be

described by a formal interface definition similar to an RPC interface specifica-

tion. In addition to the description of arguments and operations, each operation

must be assigned a unique name for universal identification, similar to RPC pro-

tocol numbers. Thus a transport layer may be thought of as a semantics-free

RPC protocol with a stylized method of marshaling and delivering arguments.

NFS provides a good prototype transport layer. It layers on top of existing

local file systems, instead of implementing a monolithic networked file system,

31

Internally, NFS uses a vnode-like RPC interface. NFS was not designed to serve

as a transport layer. It is instead customized for remote file access. We have

modified NFS to allow it to automatically pass previously-unknown operations.

This approach quickly resulted in usable transport layer, but some complications

have arisen in trying to use NFS as a semantics-free transport layer. These

problems are described in Section 5.3.

In addition to the use of an NFS-like inter-address space transport layer, a

more efficient transport layer operating between the user and the kernel level was

conceived. Such a transport layer could very easily provide “system call” level

access to the 405 interface, allowing user-level development of file system layers,

and providing an interface to new file system functionality.

The desire to support a system-call-like transport layer placed one additional

constraint on the interface. There are differences in the services typically offered

by an RPC interface and a system call interface. In a system call interface, the

kernel expects the user to provide space for all returned data. The Unix read

system call, for example, requires the user to pass a pointer to a buffer for the

returned data. This is necessary because the kernel cannot, in general, know how

to allocate user-level buffer space itself. Because an RPC interface has complete

control over both the client and the server, RPC mechanisms often allow the

server to dynamically allocate space which can be returned to the client.

To allow an interface to adapt equally to the RPC and the system call trans-

port layers, the more restrictive policy of the two must be chosen. The 405

interface therefore disallows the server side of the interface from returning dy-

namically allocated data. Instead, the client must provide a pre-allocated buffer.

In practice, this has not been a problem, since the client can often make a good

estimate of the required buffer size. If the client’s first guess is wrong, informa-

tion is returned so that the buffer can be re-sized correctly and the operation

repeated.

3.6 Centralized Interface Definition

Several aspects of the 405 interface require precise information about the charac-

teristics of the operation taking place. Network transparency requires a complete

definition of all operation types. A bypass routine requires knowledge of each

vnode argument so that it may be mapped to a lower-level vnode. This in-

formation must be provided by the designer of the file system layer using new

operations.

Detailed interface information is needed at several different places throughout

32

layer A

layer C

layer A

layer B

layer C

layer B

Figure 3.8: Upcalls proceeding up a stack and between parallel stacks.

the layers. Rather than require that the interface designer keep this information

consistent in several different places, operation definitions are combined into an

interface definition file. Similar to the data description language used by Sun’s

rpcgen compiler [Sun87, Sun88] and also Hewlett-Packard’s NIDL data descrip-

tion language [ZDL+90], this file lists each operation and its arguments6.

3.7 Flow of Control

Traditional layered services have had a strictly linear behavior. A user would

request a service. That user’s request would pass down through each layer, each

returning a result to the previous and ultimately back to the user. For many

reasons, layers in a distributed system frequently require a more general flow

of control. Upcalls begin at lower layers of the system and proceed upwards to

higher layers [Cla85]. More generally, operations can be invoked between two

unrelated stacks. Figure 3.8 illustrates these cases.

An RPC service provides this sort of generality, typically allowing communi-

cation with any object on any machine on a network. While it would be possible

to create a new RPC interface to file system facilities, the vnode interface already

defines a set of services, and transport layers export this interface to other ad-

6Both RPCGEN and NIDL were considered for use as the interface definition language. The

C code generated by RPCGEN often has additional levels of structure indirection with certain

data types, making it unsuitable. A NIDL implementation is not currently available for our

development environment.

33

dress spaces. It seems foolish to require that the services of the vnode interface

be duplicated by an additional RPC protocol and level of complexity.

The chief advantage an RPC protocol offers is the ease with which an arbitrary

client (layer) can establish communication with an arbitrary server (other layer,

in general). Given a network address, messages can be communicated between

any willing parties. This contrasts with the basic services of the 405 interface,

where communication proceeds only down the stack. The problem reduces to one

of naming. Services in an RPC system have a consistent, low-level namespace

allowing all to be equally addressed, while vnodes are only named by “references”

(pointers) which are meaningless outside the address space of their creation.

The problem of naming is made more difficult by the fact that different layers

may inhabit different address spaces or even machines. The problem is further

compounded by the need for general fan-in and fan-out of each layer. Although a

layer knows other layers it is stacked upon (fan-out), it should not be required to

make special accommodations for its clients (fan-in)—this violates information

hiding.

The 405 interface partially solves this problem of naming by expanding on two

services found in the current vnode interface. A facility is provided to identify

any file in a filesystem by a low-level name. This file identifier , or fid, can be

mapped to and from a vnode as desired, provided that the file system is known7.

This level of naming provides the facilities needed to use an RPC layer as a

generalized upcall mechanism. If it is desired to use an upcall between two layers,

a transport layer can be placed between them. Before an upcall is desired, a fid

is saved for the file upon which the upcall will be performed. When the upcall is

needed, this fid is mapped to a vnode on the RPC layer. The upcall operation

can then be performed as normal on the returned vnode.

Although this approach works, there are several disadvantages. Because file-

ids are only unique within their file system, there is still no truly global name-

space. Although mounting is not necessarily a complex operation, use of an RPC

layer for upcalls requires either that either the path of upcalls be pre-specified,

or that RPC layers be mounted as needed.

A concern in any environment permitting circular upcalls is one of deadlock.

There are three possible positions on deadlock. It can either be detected, avoided,

or not addressed. Deadlock detection is typically too expensive for a low-level

7The 405 interface uses a slightly different fid than the traditional vnode interface. Sun’s

vnode interface limits file-ids to 12 bytes of data. The 405 interface removes this limit, important

because we expect layers to often add to the fid of the layer beneath them. The new fid

operations also meet the restrictions of Section 3.5 regarding data allocation.

34

operation system, particularly when deadlock can span multiple machines or

address spaces. Deadlock avoidance is easily solved by eliminating upcalls, but

this denies a potentially valuable service. Rather than these approaches, the

405 interface takes the third position, leaving the problem of deadlock to the

application at hand where it can be dealt with efficiently as needed.

35

36

CHAPTER 4

Layering Techniques

37

The previous chapters have discussed the reasons for building file systems from

stackable layers and a prototype interface designed to facilitate layer development.

The new interface removes many technical problems in creating stackable file

system layers without an appropriate interface.

The great advantage of stackable design is its ability to allow rapid develop-

ment, experimentation, and use of new file system functionality. Although ad-

vantages of layered development can be utilized with existing file systems, many

new development techniques exploit the full potential of stackable development.

This chapter examines several new approaches to file system development

enabled by a stackable interface. Beginning with an example to illustrate several

different uses of layer design, we then examine each method in turn. The next

chapter will then illustrate these techniques by layers prototyped at UCLA.

4.1 A Hypothetical Example

To consider the uses of stackable layering, let us explore a scenario in which layers

may offer superior solutions to several problems.

Imagine a large University, the Université Charmant pour Les Animaux. At

this university, Department of Cognitive Sociology has a large number of graduate

students eagerly writing their dissertations on the computer system, a Unix

minicomputer. Unfortunately, as at many schools, the students have been so

prolific at their work that they have reached the limits of their disk space.

Utility program such as the Unix compress(1) program reduce file storage re-

quirements by encoding data. The local system administrator, Thierry E. Corée,

encourages the use of such tools. This method of file compression requires a con-

scious effort on the part of the user. Because compression becomes yet another

step in getting work done, it is not consistently used and little disk space is saved.

Considering the problem, it occurred to Thierry that if compression could be

added to the operating system kernel, it could be made transparent to the users.

Files would be decompressed automatically, on demand. Files would then remain

uncompressed (allowing rapid access to recently used files—caching, by any other

name), and a daemon could run in the background compressing rarely used files.

A source code license was not available to the department for their version of

Unix, so modifications could not be made directly to the file system. Further-

more, the last file system code Thierry had seen included a 17 page namei routine

that Thierry did not understand and certainly did not want to break. Rather

than directly modify the file system, Thierry decided to build a compression layer

38

using the new stackable file system interface. The more he thought about it, the

more attractive this approach seemed. A layer could run over several physical

file systems, both the BSD Fast File System running on some of the depart-

ment’s computers, an older file system running on the department’s PDP-11’s,

and even the Yaincomp file system running on their latest Unix platform. By

using layering, he could substitute one physical storage layer for another.

Design of a compression layer seemed fairly straightforward. Only a few oper-

ations would need modification. Access of a compressed file would automatically

uncompress it. Thereafter, all operations would simply be passed though to the

physical storage layer.

Although design of the new layer seemed straightforward, there was one design

difficulty. A compression program typically creates a new (hopefully smaller)

version of the file. When compression is finished, it gives the new file a file name

similar to the old file and removes the uncompressed file. A typical Unix file

systems allow a file to have multiple names, or “hard links”. Although there

are several names for one file, all names point to the same data, so less space

is taken up. Imagine compressing a file with multiple names. For each name, a

separate, new, compressed version of the file will be created, probably consuming

more storage rather than saving it. Thierry realized that this problem results

from the way Unix file systems are constructed. Rather than do compression at

the “naming” level of the file system, where directories exist and file names are

used, compression should be provided at the “file” or “inode” level. But because

standard file systems were built before file system layering, they encompass too

many abstractions. Physical file systems would be more useful they were broken

into several layers, one providing directory services, another providing simple file

access, and possible other layers.

Thierry decided to live without files with multiple names. The layer will

automatically know when to uncompress files, but how can it know when to

compress files? What is needed is a new operation on files, “compress”. A

thoughtful user could use the new operation explicitly to compress files, and a

background program could run occasionally and perform this operation on rarely

used files. Fortunately, the stackable file system was built with an extensible

interface, so it was easy to add this new operation. The stackable interface was

even available at the system call level, so the new operation was immediately

available to his background compression daemon.

The department had a number of diskless workstations. How could they get

access to compressed files? Thierry realized that it is easy to make the compressed

files available on other machines with NFS. In effect, he was creating a three-

39

level stack of layers: NFS on the top, the compression layer next, and finally the

physical storage layer.

How could a user on a diskless workstation use the new “compress” file oper-

ation to force his or her files to be compressed? NFS would be between the user

and the compression layer, and NFS does not support a compression operation

(indeed, it doesn’t even support a “mknod” operation). Instead of using NFS

with its fixed network protocol, Thierry used a transport layer. This layer is a

modified version of NFS, extended to support passing any new operation over the

network. When Thierry designed his new compress operation, he specified the

types of each of its parameters and gave it a unique identifier. The transport layer

uses this unique identifier to make sure that the other machine also knows about

this new operation, and then uses the type information to send each argument

“over-the-wire” between machines.

So Thierry built his new compression layer, and it worked well. Disk space

was less of a concern now. When he installed this, Quoi Chen (the person doing

backup dumps this month) mentioned that the backups on the 8mm paper tape

reader were exceeding the size of one tape. Quoi complained that the backup

program was reading the uncompressed versions of all the files, since it read

through the compression layer. To solve this problem, Quoi changed the backup

program to read all files directly directly from the physical storage layer, not

through the compression layer. This way, the raw, compressed data was written

to tape. By accessing files from different layers of the stack, both the space-saving

compressed view and the standard, non-compressed view could be accessed. Users

could get uncompressed data with access through the compression layer, while

the backup program read the smaller, compressed data.

A new contract came to the department, dedicated to accessing sociology

data stored in IMS from IBM PCs. Professor Joy A. Cartes received a grant

of a dozen PCs, and wanted to be able to access her compressed files stored on

the department’s main computer from the PCs running DOS. The PCs did not

run Unix, though, so hope of porting the compression layer to the new operating

system was slim. Fortunately, another company had developed PC-NFS, allowing

PCs to access data stored on Unix computers through the standard NFS protocol.

Since NFS would run stacked above the compression layer, Thierry was able to

use this standard protocol to allow access to compressed files from machines with

a completely different operating system.

Because of his success at conserving disk space, Thierry managed to talk his

boss into loaning him a workstation to take home. He set it up, and even got

NFS working over a 9600 baud modem to access his files at work from home. But

40

he was disappointed in performance. His modem did not do data compression,

and waiting a full minute to read his editor configuration file just seemed like too

long. Unable to afford a new modem with compression, he realized that, with a

few modifications, his compression layer could be used once again. He changed

the compression layer so that it would always compress the data as it was written

and decompress it as read. He also installed a switch so this compression layer

could turn into a decompression layer, decompressing data as it is written and

compressing it when it is read. Then Thierry mounted NFS in a new way. He put

the decompression layer on his machine at work, and the modified compression

layer on his machine at home, and NFS in-between. This way, his data was always

compressed before it went through the NFS layer and over the slow modem. By

having the two layers cooperate, a “compressed” NFS protocol was created, all

without modifing NFS itself. Performance was much better; certain files (such as

news) seem particularly suited to content compression.

As part of his research in “Image Compression in the Color Domain”, Thierry

came across a new compression algorithm suitable for use in his compression

layer. He decided to replace the algorithm used in his compression layer with the

new one, but since switching to the new brand CPU, Thierry’s kernel debugging

skills had dropped considerably. Rather than debug the new algorithm in the

kernel, Thierry instead arranged that his layer could run as a user-level server,

outside the kernel. The operating system would use a transport layer to access

his out-of-kernel server, and he could use the system-call level vnode interface

to get to the physical storage layer still running in the kernel. After changing a

few makefiles and adding a “kernel-compatibility” package, Thierry was able to

run the compression layer out of the kernel under his graphical debugger. The

compression layer ran fine out-of-kernel for debugging, but moving all that data

between address spaces had a certain cost, so when the new layer was working,

Thierry recompiled his kernel and ran it more efficiently there. Because his

changes were isolated to the compression layer, Thierry was confident of the

integrity of the rest of the file system implementation.

4.2 Layer Composition

There are many possible ways to structure a file system into layers. While there

are no all-encompassing rules for layer selection, layers can be reused most often

if each implements one well-defined abstraction. Layer design is in this respect

similar to design of filters in the Unix shell.

An example of the problem of layer design arose in the compression service

41

example. Compression should be a “file” level concept, but the UFS exports

only “directory” level access where files can have multiple names. Examining the

UFS in more detail, we see three basic abstractions: a disk partition, file level

access with fixed names (inode-level access), and a hierarchical directory service.

If each of these were separated into layers, they would be useful for implementing

other file systems. There are many file systems (databases, AFS, and Ficus for

example) which would enjoy efficient inode-level file access without the overhead

and complication of directories. To take matters even further, perhaps the access

control functions of the UFS ought to be separated into a layer, allowing standard

Unix file protections to be replaced by an access-control list layer.

The Ficus replicated file system is a second example of layered file system

design. Figure 4.1 shows the construction of the Ficus replicated file service. It

is composed of two cooperating layers, a logical layer exporting the notion of a

highly-available file, and a physical layer mapping a single replica to a standard

Unix file system. Between these layers, a transport service can be inserted to

provide access to remote replicas. The physical layer is actually composed of

several services: a facility to support additional file attributes, one to map low

level identifiers to files, and support for replication-specific issues. One might

imagine improving Ficus performance by replacing the identifier mapping facility

with inode-level file access, and the extended attribute facilities seem a generally

useful service. For this to be possible, the separate functions of the physical layer

must be isolated in configurable layers. Section 5.4 discusses this possibility in

greater detail.

4.3 Layer Substitution

One of the factors making layer composition difficult is the inclination to make

layer services as general as possible. New features can often be added on to

existing layers, but eventually weight of a number of options and attachments

make a layer difficult to use and apply to general problems.

When several layers are designed to a similar semantic interface, one can

often be substituted for another. Layer substitution can be used to promote

compatibility and improve performance.

As example of several layers built to a similar interface, consider the vari-

ous flavors of physical file systems. Traditional Unix supported what is today

the System V file system [RT74]. Berkeley developed the Fast File System to

a very similar interface (long names and symbolic links being the primary in-

terface modifications, [MJLF84]), and recent work in log-structured physical file

42

system calls

user

OS

disk I/O

other

UFS

Ficus
physical

Ficus
logical

UFS

Ficus
physical

NFS

replicas

Figure 4.1: The Ficus stack of layers. The left stack provides access to a local

replica. The right stack shows the addition of a transport layer to allow remote

replica access.

43

systems appears promising [OD88]. Because of its interactions with other kernel

mechanisms, porting a physical file system from one machine or Unix variant

to another can be difficult. If file system layering is used, high-level file sys-

tem features (such as replication, encryption, and compression) can be developed

independent of the underlying physical file system. If each physical file system

adheres to a similar interface, then these higher level services can run over several

highly-tuned physical layers.

Layer substitution can also be used to improve performance by replacing a

less efficient layer with a more specialized layer. Transport layers serve as a good

example of this practice. We have developed two transport layers. The first is a

version of NFS modified to bypass arbitrary operations. This layer provides the

full generality of a transport layer, including operation between any two arbitrary

address spaces. It also adopts a very general approach to argument passing,

mandating repeated copying of arguments as they move from place to place. We

have also developed a specialized transport layer, the utok layer. This transport

layer functions only from user-space to kernel-space. Because this layer solves

a much more constrained problem, it is much more efficient than the general

NFS-based transport layer, requiring only one copy as arguments are moved into

kernel-space.

4.4 Cooperating Layers

Layered design encourages the separation of file systems into small, reusable

layers. Sometimes, services that could be reusable occur in the middle of an

otherwise special purpose file system. For example, a distributed file system may

consist of a client and server portion, with an RPC service in between. One can

envision several possible distributed file systems offering simple stateless service,

exact Unix semantics, or even file replication. All would have need of the RPC

service, but such a service would be buried in the internals of each specific file

system, unavailable for reuse.

Cases such as these call for cooperating layers. The reusable service is built

as one layer, and the rest is split into two separate, cooperating layers. When

the file system stack is composed, the reusable layer is placed between the others.

Because it is encapsulated in a separate layer, the reusable layer is available for use

in other stacks. Ficus illustrates this case, placing an optional transport layer

between two cooperating layers. Data compression and decompression over a

slow link as described in the example beginning this chapter is another example of

cooperating layers. To compress data being moved over a slow link, a compression

44

OS

encryption
 layer

 disk
layer

OS

encryption
 layer

transport
 (client)

transport
 (server)

Figure 4.2: Multi-layer access for transmission of encrypted data.

and a decompression layer were wrapped around the transport layer. These

layers cooperate to compress and decompress data, providing the appearance of

standard, uncompressed data both above and below the pair.

4.5 Multi-layer Access

File system stacks are constructed layer by layer, each adding functionality. Users

access all files through the top of the stack—each layer then has its opportunity

to influence that user’s action.

There are some cases when it is advantageous for user-level programs to bypass

stack layers. Because each stack layer is nameable in our design, it is possible

for knowledgable programs to choose to avoid upper stack layers. The example

of Section 4.1 illustrated one example of why this might be done, to back up

data without uncompression. An encryption layer would present a similar case;

one may choose to back up the encrypted data rather than the clear-text. With

encryption, it might also be advantageous to provide only encrypted data for

remote access (see Figure 4.2). By requiring decryption be done at the clients

machine, clear text is made not available to the network as a whole.

45

4.6 File System Testing and Verification

Layered file system design is a valuable tool for software verification. Production-

quality software requires very careful quality control. Separation of file system

services into several layers minimizes the impact of modifications of one module

on others.

The layer interface serves as a tight firewall between modules. Layers do not

share data structures, so layer interaction is limited to a relatively small number

of well-documented operations. Changes to a monolithic file system typically

must consider possible interaction with about 10,000 lines of code. Changes to

a layered file system can often be isolated to one layer, minimizing the amount

of affected code to about one-quarter what would otherwise be effected. The

smaller size of individual layers means that testing and verification can be more

tightly targeted, and therefore more quickly completed.

4.7 Compatibility with Layers

Layering allows unprecedented flexibility in the configuration of a filing environ-

ment. By allowing re-use of existing services and interface extension, layering

also aids rapid development of new file systems. But rapid development has the

potential to rapidly create incompatibilities.

Unix is not the only operating system in use today. Currently, few operating

systems support stackable filing, and it is unlikely that many non-Unix operating

systems ever will. Interoperability between machines is still required. Ideally, any

machine would be able to access the resources of another supporting stackable

filing, even though they use different operating systems.

Finally, as the number of machines participating in shared filing grows to

campus and nationwide scale, hope of universal agreement on one software version

is impossible. Many incompatibilities arise as scale grows and administrative

differences and issues of autonomy become important.

There are several approaches to resolving these compatibility problems in

a stackable architecture. A compatibility layer can reconcile incompatible soft-

ware versions by mapping between differences. If two layers have similar, but

not exact, views of the semantics of their shared interface, a thin layer can eas-

ily be constructed mapping incompatible operations into their equivalent. This

approach has been taken several times to adapt to minor incompatibilities of

existing interfaces (see Section 5.5).

46

There are still many computers that will not support a layered interface in the

near future. The installed base of IBM PC and compatible computers approaches

18 million, and many other non-Unix machines exist. Because transport layers

bridge machine and operating system boundaries, they offer a promise to support

an even wider computing environment.

NFS has become widely available on a number of different operating systems,

including IBM and Macintosh personal computers as well as VMS minicomputers

and MVS mainframes. NFS can be placed on the top of a file system stack,

making basic services available on other machines. Because NFS is not extensible,

new operations will not be available, but NFS includes most standard file system

capabilities.

In addition to addressing fundamental hardware and software incompatibil-

ities, mapping services can also sometime be applied to bridge administrative

differences. Most versions of Unix identify users by a small number known as a

user-identifier, or uid. Distributed file systems often require all sites to share the

same mapping of users to uids. There is rarely coordination of uid assignment

between different administrative bodies, and it is difficult to re-assign uids when

conflicts arise. A uid mapping layer can provide a small-scale solution to this

problem by mapping between uid assignments of two administrative domains.

4.8 Out-of-kernel Development

Stackable layering is a natural complement to a micro-kernel design. Each layer

can be thought of as a server, and operations are simply RPC messages between

servers. In fact, new layer development usually takes this form at UCLA. Fig-

ure 4.3 shows this strategy. The NFS-based transport layer serves as the RPC

interface, moving all operations from the kernel to a user-level file system server.

Another transport service, the utok (user to kernel) layer, allows user-level calls on

lower-level vnodes which exist inside the kernel. As a result, layers may be devel-

oped and executed as user code. Although this RPC has real cost, careful caching

can provide acceptable performance for an out-of-kernel file system [SKS90].

But stackable layering offers a valuable complement to this approach. Be-

cause file system layers each interact only through the layer interface, the trans-

port layers can be removed from this configuration without affecting a layer’s

implementation. The file system can then run in the kernel, avoiding all RPC

overhead. Thus with stackable layering, the advantages of micro-kernel develop-

ment are available when needed, but the performance overhead of RPC may be

removed for production use. Advantages of both micro-kernel and integrated-

47

OS

development
 layer

lower
layer

 nfs
(server)

user level
kernel level

 nfs
(client)

user

system
calls

nfs
protocol

utok
layer

Figure 4.3: User-level layer development via transport layers.

kernel development are available.

48

CHAPTER 5

Example Layers

49

As with many new technologies, stackable layers benefit from new design ap-

proaches. The previous chapter examined some of these approaches in the ab-

stract. This chapter instead presents a number of layers implemented at UCLA

as case studies of layered file system design.

We begin with a discussion of a simple “pass through” layer. A useful variation

of this “null” layer is a measurements collecting layer. This is followed by a

discussion of two transport layers, layers joining two address spaces or machines.

Section 5.4 examines Ficus, the most ambitious use of file system layering to date.

Version mapping layers provide valuable compatibility. A cache consistency layer

illustrates a service common to remote file access. Finally, ideas for several other

layers are presented.

5.1 A Minimal Layer

A common first program when learning a new programming language is “Hello,

World”, a program which simply prints a welcome message to the output device.

Such a basic program illustrates the fundamental constructs of the language.

Unnecessary complexity at this level is often a sign of an inappropriate level of

abstraction [Ros88].

Like a “Hello, World” program, the first layer we sought to develop under

the 405 interface was the minimal layer. While the minimum program prints

output, the minimal interesting layer is a “pass-through” layer. Providing no

change in semantics, such a layer merely forwards all operations to a lower layer

for processing. A minimal layer illustrates the support services needed for the

successful operation of a layer.

The null layer is such a minimal layer1. The null layer has been an important

tool in investigating the difficulty of layer development and layer overhead.

5.1.1 Null layer details

A null layer does nothing more than pass all operations to the layer it is mounted

over. Although the null layer does not “do anything”, it provides all the compo-

nents of a real layer. These components provide three basic tasks: layer initial-

ization, layer vnode management, and operation handling.

Layer initialization consists of interfacing with the rest of the kernel and the

1First implemented by Yuguang Wu under Sun’s vnode interface, it has since been ported

to the new interface, where it was tuned by John Heidemann.

50

VFS mount mechanism. Allocation and reference counting of null layer vnodes

is done by null layer vnode management code. Operation handling is quite sim-

ple; the vnode inactive operation, open, get-attributes , and a bypass routine are

implemented. Open must be provided because it is slightly irregular. Inactive is

called when a null vnode is no longer needed (its reference count drops to zero);

special code must then free the null layer vnode for the file. The get-attributes

routine is intercepted because part of file attributes is a unique file system iden-

tifier which must be unique to the null layer. A bypass layer handles all other

operations, passing them to the next lower layer.

5.1.2 Layer tuning

The null layer does not alter the semantics of the stack it is pushed upon, it

simply adds another layer. Time spent executing in the null layer is therefore all

layer overhead. Because no useful work is done by the null layer, it represents

the “worst case” in relative overhead. More sophisticated services would spend

some time accomplishing tasks for the user, providing less relative overhead. The

null layer was therefore immediately useful in minimizing this overhead with

performance evaluation and tuning.

Chapter 6 examines the performance of layering in detail. Here we will try to

characterize the qualitative aspects of layering costs.

Initial evaluation of the layered interface revealed that the majority of over-

head was occurring in vnode creation. Each time a new file was accessed, a null

layer vnode data structure would be created for it. Very quickly the last reference

to the file would go away, and this data structure would be immediately released.

Consistent with principles of locality, this same file would often then be immedi-

ately re-accessed, unnecessarily repeating this work. In early versions of the null

layer, nearly 85% of name translation overhead was spent creating vnodes.

The solution to this problem is two-fold. Most important, some null node

caching is employed. Rather than destroy null nodes immediately when no longer

needed, they are cached. If the same node is used again in a short period of time,

it can be immediately reused without expensive re-creation. The second solution

to this problem is to use less expensive memory allocation routines, trading some

space for time.

As a result of careful null node management, layer overhead has been reduced

from 10-20% to 1-2% of elapsed time of a mix of file system operations when

stacked over a standard Unix file system. A complete analysis of current layering

costs can be found in Chapter 6.

51

5.1.3 Null layer use

While the null layer is useful in evaluating layer performance, it is also a valuable

tool in the construction of other layers.

Construction of new layers at UCLA typically begins by copying and renaming

the null layer. This cloning allows easy re-use of existing layer mechanisms. This

approach has proven proven quite valuable in practice, allowing useful new layers

to be created with as few as 70 new lines of code. Section 6.2 discusses the effort

required for new layer development in detail.

Duplication of null layer code suggests that perhaps some layer commonality

could be merged into shared subroutines. On the other hand, the success of the

null layer in the development of new layers indicates that a reasonable level of

abstraction has been achieved.

5.2 A Measurements Layer

Kernel measurements have often been difficult to take, traditionally requiring

changes deep in the implementation of the operating system. If not done care-

fully, such changes can easily disturb what is being measured. Installation of

these changes imply kernel re-compilation and installation, interrupting work on

the target system. Furthermore, such changes can rarely be left in production

code because of potential overhead. Because of these problems, file system per-

formance analysis has been typically reserved to a few research labs and systems

software houses. Even there, the effort required to take quality measurements

has resulted in the publishing of only a few performance studies based upon real

environments [Flo86b, Flo86a, OCH+85].

Stackable layers offers an alternative to this approach. A measurements layer

can cleanly separate instrumentation from the subject being measured. Although

a layer cannot collect data on the internal functioning of other layers, it is ideal

for collecting general information such as traces and usage patterns. A single

measurements layer can easily be added to take measurements of any existing file

system layers. Run-time stacking allows a measurement layer to be added to a

machine without rebooting, and measurements can easily be configured in and

out of daily use without code changes. The ease-of-use of a measurements layer

raises the potential for systems administrators to examine their configuration for

possible tuning.

At UCLA, Yuguang Wu has built a prototype measurements layer [Wu91].

A modification to the null layer, the measurements layer records the entry and

52

slow
layer

caching
 layer

measurement
 layer 2

measurement
 layer 1

Figure 5.1: Measurement layers analyzing a caching layer.

exit times of operations, as well as interesting operation arguments. With a

post-processor, the layer can examine working set size.

The measurements layer is a particularly interesting stackable layer because

it is completely semantics free. The measurements layer should do nothing to

change the semantics of the interface, it should merely record what passes through

it. Most other layers alter the semantics of their stack. Because the measurements

layer is completely semantics free, it is the best example of a layer which could

be added anywhere in a stack while in use.

A file system stack offers an unusual environment for taking measurements.

While a measurements layer cannot intrude on the private data of any individual

layer, it can be inserted at several different places in a file system stack, any-

where layer interface is present. For example, Figure 5.1 shows a caching layer

surrounded by two measurements layers. By taking the difference in the traffic

through the two measurement layers, the effectiveness of the caching layer can

be evaluated.

There are a number of interesting directions in which a measurement layer

could progress. More sophisticated analysis is always possible. More interesting

would be a merger of dynamic kernel loading and a measurements layer. A mea-

surements layer could provide a framework for pluggable measurements modules

which could be loaded at run-time into an active kernel. Examination of real

systems with a measurement layer is also one of the most interesting possibilities.

53

5.3 Transport Layers

Like the null layer, the sole purpose of a transport layer is to forward all operations

to the next layer down the stack. But unlike a null layer, the layers above and

below a transport layer are in different address spaces. The transport layer bridges

the gap, moving all operations from one domain to the other.

The duties of a null layer are mapping vnodes and file system identifiers

between layers. To these, a transport layer adds the burden of transmitting the

arguments and results of the operation from one address space to another.

A transport layer can be thought of as being composed of two halves, one

half running in the address space of the layer above, the other in that of the

layer below. In networking terminology, these would be the client and the server,

respectively. Between these two halves some protocol is used to transport opera-

tions and arguments. This protocol is distinct from (but usually very similar to)

the vnode interface “protocol” and varies from transport layer to transport layer.

We have implemented two transport layers. The first is a general transport

layer capable of moving operations between any address spaces on machines con-

nected by Internet network protocols. This layer uses a modified version of Sun’s

NFS protocol for internal communication [SGK+85]. Our second transport layer

is much more specialized. The utok layer maps user-level vnode operations to

operations on kernel-level vnodes of the same machine. This layer uses one new

system call and an XDR package to move data in and out of the kernel address

space. Figure 4.3 (page 48) illustrates the use of both of these layers. NFS is

used to access an out-of-kernel file system server, and the utok layer provides

transport back in the kernel from this server.

Transport layers are an important class of stackable layers. Our experiences

implementing and using these layers have presented several observations. While

we found transport layers very useful and reusable, current implementations have

several drawbacks.

Our first observation is that stackable layers and transport layers combine

quite well. Because transport layers allow one machine to export services it

provides, they can be used to bridge software or hardware compatibility problems.

Transport layers also serve as an example of layer substitution. In out-of-kernel

development we use the NFS-based transport layer to access the user-level server,

but switch to the utok layer for more efficient return to the kernel.

By providing the 405 interface at the system-call level, the utok layer makes

several important user-level programs possible. Most important is the ability to

debug file system layers at user level, even though they are mounted over lower

54

layers running in the kernel. Details of this approach are found in Section 4.8. The

utok layer also makes the vnode interface available to standard user programs.

Ficus makes extensive use of this facility to implement some services as user-level

programs, rather than in the kernel. A suite of utility program allow examination

and editing of Ficus-specific data structures, data accessible only through Ficus-

specific vnode operations. Since the utok interface expands automatically with

the addition of new operations, all operations are immediately available at the

user-level. This provides a much more malleable environment than the traditional

approach of providing new functionality with new, hand-written system calls.

Our experiences with existing physical file systems have shown that they often

encompasses too many abstractions, and could be much more useful if broken

into several smaller components. Interestingly, the same problem occurs in our

NFS-based transport layer. NFS provides several logically independent services:

transport service with an RPC protocol, statelessness for failure recovery, and a

cache consistency algorithm. While the transport service provided by NFS is very

useful (once extended to support additional operations), its attempts to provide

stateless services has been frustrating. NFS’ statelessness alters the semantics

of the interface, making the view of a file system through NFS different from

that provided by direct access. In a stackable environment, NFS might be better

implemented as a single transport layer surrounded by layers mapping from a

stateful operations to the stateless transport layer.

Finally, cache consistency in a distributed system is often a difficult issue.

While NFS’ approach to cache consistency is good enough for the vast majority

of file system use, it can cause problems when NFS is used as a transport layer.

Rather than provide cache consistency as part of a transport layer, we have

been successful at separating cache consistency algorithms into a separate layer.

This allows mount-time choice between inexpensive caching algorithms with poor

consistency and more sophisticated algorithms provided completely transparent

semantics. Section 5.6 describes our cache consistency layer in detail.

5.4 Ficus: replicated file services

Ficus is a distributed file system supporting replication with optimistic concur-

rency control [GHM+90, Guy91]. It is also one of the most ambitious uses of

stackable layering to date, using two cooperating layers in its implementation.

Ficus is an example of cooperating layers, being composed of two separate

layers (logical and physical) with an optional transport layer in-between for re-

mote access. Rather than write directly to disk, a UFS layer is utilized for all

55

low-level storage. Figure 4.1 (page 43) shows two configurations for a Ficus stack

of layers.

The upper Ficus layer presents the appearance of a single standard (non-

replicated), highly available file system to the user. This Ficus logical layer selects

a particular replica to serve a user’s requests, coordinating access to multiple

replicas. It also coordinates propagation of information about replica changes,

and coordinates the reconciliation of divergent replicas, and manages location

and automatic mounting of volumes as necessary.

The lower Ficus layer coordinates physical disk access, and so is known as the

Ficus physical layer. It maps Ficus files to an underlying UFS file system, allowing

file access by Ficus “file id” and supporting extended replication attributes and

directory entries.

Ficus has proved to be an invaluable example of the use of stackable layers,

driving both the design of the layer interface and stackable techniques.

Ficus’ use of the stackable approach means that no code in the Ficus layers is

needed to implement RPC or low-level disk management. Cooperating layers has

allowed the reuse of transport services, since remote access is needed within the

“middle” of Ficus, between the layers. Stacking over already existing physical

storage layers allowed re-use of existing disk storage facilities.

The extensible nature of the 405 interface has proved particularly valuable in

Ficus. Replication requires a number of support operations. These operations

were accommodated in early versions of Ficus by overloading existing services

and encoding information in unusual file names and special control files. Several

styles of overloading are required to pass different kinds of information through

the unsupportive interface, greatly adding to implementation effort. Support of

new operations provides a clean approach to adding new operations, delegating

the complicated details of encoding to automated tools.

On the other hand, the current Ficus architecture could be improved. From a

layering standpoint, the Ficus physical layer encompasses too much functionality.

What is desired is a simple, flat namespace of files with extensible attributes

for low level storage. Because an extensible interface was unavailable when the

layer was designed, all of these features are merged into the Ficus physical layer.

Separating these services into a number of layers would offer more flexibility

in configuration, and provide services useful in the construction of other layers.

Different methods of physical storage could be used depending on requirements

for compatibility and efficiency. Figure 5.2 illustrates a more modular design of

the physical layer.

56

simple flat filesys

file attributes

file−id simple

Ficus attr format UFS attr format

Ficus dir format

UFS dir format

file−id UFS

FFS disk layout LFS disk layout

Ficus attr UFS

UFS or LFS

current
 Ficus
physical
 layer

Figure 5.2: Decomposed Ficus physical and disk storage layers.

57

5.5 Interface Versioning Layers

An extensible interface allows incredible freedom for development. It also of-

fers the potential for incredible incompatibility as interfaces diverge to support

slightly different capabilities. Even when very similar operation semantics are

provided, a difference in argument type or syntax can make similar operations

unusable.

In addition to interface compatibility, the many administrative domains of the

real world often results in an administrative incompatibility. Sites standardize on

different methods of file storage; even user identification varies from installation

to installation.

Often, incompatibilities are slight. A short patch can usually map over syn-

tactic or slight semantic differences. File system stacking allows this mapping to

be easily encapsulated in an independent layer. Such a mapping layer burdens

neither the caller nor the callee with the immediate responsibility to reconcile

incompatibilities, instead confining translation to a layer which can be thrown

away when a common interface is established. Since changes are not made to the

original layers, new compatibility layers can be swapped in easily.

Several times in our file system development we have found it necessary to

employ mapping layers. The newo layer maps between versions of the open

system call, and also provides extended-size file identifiers. The shrinkfid layer

maps the other direction, translating large file-ids into NFS-compatible “short”

file-ids. In our experiences, mapping layers can be developed quite rapidly by

modifying the null layer. Each of these layers was implemented in a few days.

In addition to mapping between differing interfaces, we have also employed

mapping layers to translate between different administrative domains. User iden-

tification in NFS is done by “user-id”. To maintain autonomy, different admin-

istrative domains rarely coordinate allocation of these identifiers. As a result,

NFS communication between two sites can result in improper file ownership and

access when user-id allocation conflicts. To allow bilateral sharing between dif-

ferent administrative domains, a user-id mapping layer (umap) was developed by

Tom Page [Pag91]. Developed in about a week, such a layer illustrates the power

of stacking to address new problems rapidly.

5.6 A Consistency Layer

Remote filing systems are a part of the daily lives of nearly every workstation

user today. Common storage of rarely used files on a centralized machine mini-

58

mizes expenses both by common use of resources and simplified administration.

Distributed filing services are so ubiquitous that no workstation vendor today

ships a product without some remote filing capability.

Caching is critical to the performance of remote filing. Locality is so strong in

filing environments, and the performance ratio between local and remote access so

great that caching is a requirement of any distributed filing solution. Surprisingly,

there is little agreement in the quality of caching services required. Service ranges

from no explicit guarantee of cache coherence to absolute transparency in a cluster

of workstations. On the other hand, perhaps lack of agreement is not surprising,

given the widely varying demands of user applications, from one-time text editing

to multi-user distributed databases.

Because of this wide variation in both quality and demand for service, cache

coherence represents an ideal application for a modular, stackable solution. The

ability to offer a number of “pluggable” coherency solutions is an attractive one,

allowing the user to trade off consistency for performance as desired.

For this reason, a prototype cache consistency layer was developed. The con-

sistency layer uses a simple token passing mechanism to insure cache coherence

over NFS.

Figure 5.3 illustrates the structure of the consistency layer. Sitting above NFS,

the layer communicates with its companion layers on other machines. Before each

file operation, the layer acquires a token for that file. Accompanying this token

is the modification time of the file. Based on this time, the consistency layer calls

upon NFS to purge its cache as required.

The consistency layer employs some simple optimizations. Between opera-

tions, the token remains at the site of last use. Consecutive operations at the

same site therefore require no unnecessary remote access, they simply re-use

the existing token. Optimizations such as multiple read-only tokens and token

regeneration could be added easily within the framework of the existing layer

implementation.

In addition to the separation of coherence algorithms from the actual trans-

port mechanism, the architecture of the consistency layer results in another novel

feature. To communicate between consistency layer instances at separate ma-

chines, generalized “upcalls” are employed. The consistency layer requires the

generalized flow of control of an RPC protocol, but requires only operations on

files similar to file system interfaces. Rather than develop a new RPC protocol,

the consistency layer uses the upcall mechanisms of the 405 interface. An RPC

layer is configured to operate between pairs of consistency layers, and file iden-

59

NFSserver

consistency

NFSclient NFSclient

UFS

consistency

user A user B

Figure 5.3: Logical configuration of a cache consistency layer.

60

NFSserver

consistency

NFSclient NFSclient

UFS

consistency

user A user B
RPC
layer

RPC
layer

Figure 5.4: Layer configuration of the prototype cache consistency layer.

tifiers are used as low-level names for files2. Figure 5.4 illustrates all layers used

in consistency layer operation.

The unusual figure-eight mounting pattern shown in Figure 5.4 is required for

bi-directional RPC flow. It also requires a careful mounting sequence for correct

operation. As such, this represents an ideal opportunity to apply on-demand

“automounting” as described in [PGP+91].

The consistency layer has proven to be an exceptional demonstration of the

benefits of file system layering. It cleanly separates remote access methods from

the cache consistency protocol of a distributed file system, allowing either to be

substituted. Its development in one week’s time as a class project is a further

example of the benefits of layering for rapid file system development. Such rapid

development was possible only with the re-use of existing RPC and remote file

2Ironically, this “RPC layer” is actually the same modified NFS transport layer used for

remote file access. These dual aspects of NFS are another example of how it could be split into

separate layers: one to provide RPC service, one to provide caching, and another to implement

a cache coherency policy.

61

access methods.

5.7 Other Layers

The layers described here are but a few of the many interesting file system services

one might provide. This section touches on some other layers that have been built

or might be built.

Several layers have been prototyped at UCLA as class projects:

file versioning This layer provides storage and creation of file version as they

are edited, similar to file versioning services in VMS.

compression File compression has the potential to significantly increase effec-

tive storage [Cat90]. Compression and decompression in a layer make this

savings possible without explicit user intervention.

encryption The entire Unix file system must be accessible to administrative

personnel, if only to do file system backups. An encryption layer automat-

ically encrypts all on-disk information, resulting in truly private data.

second-class replication Laptop computers are becoming increasingly power-

ful and available. While their portability is attractive, currently the user

must manually coordinate duplication of information between the laptop

and primary computer. This layer provides support for second-class repli-

cation targeted at the laptop environment.

To date, a dozen file system layers have been implemented. Many other layers

are possible:

Byzantine In software development, one must be robust to a variety of faults in

other layers. A “Byzantine” layer would intentionally simulate such faults

to explore what would otherwise be unusual occurrences.

Delay File systems designed for very large scale networks must assume high

operation latency. Developing such software under these conditions is not

always easy; it’s difficult to isolate faults in a machine thousands of miles

away. A delay layer could simulate the effects of random network delay

distributed system performance without requiring actual physical distance.

Multi-disk partition Traditional Unix file systems are limited to a single phys-

ical disk partition, which are limited to a single physical disk. Provided by

62

device drivers in some versions of Unix today, a multi-partition layer could

more portably merge several physical partitions together, providing the il-

lusion of a single, very large disk.

Volume The opposite of a multi-partition layer, a volume layer divides existing

disk partitions into volumes, more manageable sub-units. Like disk parti-

tions, volumes have resource limits, but volume reconfiguration can be a

much lighter weight-operation.

Caching There are many opportunities for caching in a file system stack. Slow

access from a remote machine, CD-ROM or WORM disk can be cached on

magnetic media. A layered architecture allows a caching service to built

from largely existing pieces.

Flat directory services Many sophisticated file systems would like a simple,

highly efficient method to access “files” and are not concerned with a hier-

archical directory. “Inode level” access would be a valuable service in the

construction of many layers.

User-centered naming A number of recent proposals have advocated “user-

centered naming” [Neu89, PHOR90]. Such a service could be naturally

constructed as a naming layer relying on access to many existing file systems

through lower layers.

Disk quotas The original Berkeley implementation of disk quotas was tightly

integrated with the Berkeley Fast File System. No support is offered for

quotas with other physical file systems, and interaction with remote filing

is not always obvious. A layered quota implementation would provide a

much more portable solution.

Access control lists Like disk quotas, access control lists have usually been

implemented as direct modifications to the physical file system. Again, a

layered implementation should prove much more portable.

Window system support Window-based file managers typically identify files

by icon. To identify file types in Unix systems, some Unix file managers

maintain a cached list mapping files to icons. Unfortunately, this cache can

quickly become invalid with file system activity. A window system support

layer could manage this cache, keeping it up-to-date by intercepting user

changes.

63

5.8 Summary

This chapter has described a number of currently existing file system layers. The

null layer illustrates the basic characteristics of a file system layer, and serves as

the building block of a number of other, useful layers. This approach demon-

strates the advantage of layered file systems to providing new services quickly, as

exemplified by the measurement and software versioning layers discussed here.

File system layering is key to the implementation of Ficus’ replicated filing

services. Ficus makes extensive use of layering to provide a robust, large scale,

filing environment in daily use today. Ficus makes particular transport layers for

remote access and debugging.

The consistency layer illustrates several interesting layer characteristics. Im-

plementing a particular cache consistency policy for a distributed file system,

the consistency layer is a fine example of an optional, “value-added” service that

can be selected as a user desires. The consistency layers’ use of “upcalls” also

illustrates a valuable facility of the 405 interface.

Taken together, the wide array of services described in this chapter illustrate

the general utility of stackable layers as a method file system design.

64

CHAPTER 6

Evaluation

65

A stackable file system design offers great flexibility in configuration and devel-

opment. As layers are developed, their use as software building blocks can reduce

future development times. But these benefits will be for naught if layer overhead

has a significant negative impact on overall performance; such an overhead might

force the use of monolithic structure to secure acceptable performance. To ensure

that this is not the case, a careful evaluation of layer costs was undertaken.

If stackable layering is to aid the development of new file systems, it must

have not only good performance, but also a good development environment. This

chapter also examines this aspect of “performance”, first by comparing the de-

velopment of similar file systems with and without the new interface, and then

by examining the development of layers in the new system.

6.1 Interface Performance

To examine the performance of the 405 interface, we consider several classes of

benchmarks. First, we carefully examine the costs of particular parts of this

interface with “micro-benchmarks”. We then consider how the modifications of

the interface affect overall system performance by comparing a kernel running

the 405 interface with an unmodified kernel. To determine the cost of multiple

layers with the new interface, we evaluate the performance of a file system stack

composed of differing numbers of layers.

The 405 interface was implemented as a modification to SunOS 4.0.3. All

timing data was collected on a Sun-3/60 with 8 Mb of RAM and two 70 Mb

Maxtor XT-1085 hard disks. The measurements in Section 6.1 used the new

interface throughout the new kernel, while those in Section 6.1.3 used it only

within file systems.

6.1.1 Micro-benchmarks

Parts of the 405 interface are called at least once per vnode operation. To mini-

mize the total cost of an operation, these must be carefully optimized. Here we

discuss two such portions of the interface: the method for calling an operation,

and the bypass routine.

To evaluate the performance of these portions of the interface, we consider

the number of assembly language instructions generated in the implementation.

While this statistic is only a very rough indication of true cost, it provides an

66

dynamic
offset

xfs_node

v_op

constant
offset

xfs_vnodeops
structure

xfs_foo
open
close
rdwr
.....
foo
.....

Old vnode interface

Extensible vnode interface

v_op xfs_vnodeops
structure

xfs_foo
open
close
rdwr
.....
foo
.....

(vn_foo_offset)

xfs_node

#define OLD_VOP_FOO(VP) ((*(VP)->v_op->vn_foo)(VP))

#define NEW_VOP_FOO(VP) ((*(VP)->v_op[vn_foo_offset])(VP))

Figure 6.1: Operation invocation under the vnode and 405 interfaces.

order-of-magnitude comparison1.

We began by considering the cost of invoking an operation in the vnode and

the 405 interfaces. Figure 6.1 shows the C code for calling an operation. On a

Sun-3 platform, the original vnode calling sequence translates into four assembly

language instructions, while the new sequence requires six instructions2. We view

this overhead as not significant with respect to most file system operations.

1Factors such as machine architecture and the choice of compiler have a significant impact on

these figures. Many architectures have instructions which are significantly slower than others.

We claim only a rough comparison from these statistics.
2We found a similar ratio on SPARC-based architectures, where the old sequence required

five instructions, the new eight. This calling sequence does not include cost to pass arguments

to the operation.

67

We are also interested in the cost of the bypass routine. We envision a num-

ber of “filter” file system layers, each adding characteristics to the file system

stack. File compression or local disk caching are examples of services such layers

might offer. These layers pass some operations directly to the next layer down,

modifying the user’s actions only to uncompress a compressed file, or to bring a

remote file into the local disk cache. For such layers to be practical, the bypass

routine must be inexpensive. A complete bypass routine in our design amounts

to about 54 assembly language instructions3. About one-third of these instruc-

tions are used only for uncommon argument combinations, reducing the cost of

forwarding simple vnode operations to 34 instructions. Although this cost is sig-

nificantly more than a simple subroutine call, it is not significant with respect to

the cost of an average file system operation. To further investigate the effects of

file system layering, Section 6.1.3 examines the overall performance impact of a

multi-layered file system.

6.1.2 Interface performance

Encouraged by results of the previous section, we anticipated low overhead for

our stackable file system. Our first goal was to compare a kernel supporting only

the 405 interface with a standard kernel.

To examine overall performance, we consider two benchmarks: the modified

Andrew benchmark [Ous90, HKM+88] and recursive copy and remove of large

subdirectory trees. In addition, we examined the effect of adding multiple layers

in the new interface.

The Andrew benchmark has several phases, each of which examines different

file system activities. Unfortunately, we were frustrated by two shortcomings of

this benchmark. The first four phases are very brief, making accurate evalua-

tion of these phases difficult. While the final compile phase is relatively long, on

many machines compilation is compute-bound, obscuring the impact of file sys-

tem performance. On the other hand, taken as a whole, this benchmark probably

characterizes “normal use” better than a file-system intensive benchmark such as

a recursive copy/remove.

The results from the benchmark can be seen in Table 6.1. Overhead for the

first four phases averages slightly more than one percent. The very short run

times for these benchmarks limit their accuracy, due to timing granularity. The

compile phase shows only a slight overhead. We attribute this lower overhead to

3These figures were produced by the Free Software Foundation’s gcc compiler. Sun’s C com-

piler bundled with SunOS 4.0.3 produced 71 instructions.

68

Vnode interface 405 interface Percent

Phase time %RSD time %RSD Overhead

MakeDir 3.3 16.0 3.2 14.8 −2.76

Copy 18.8 4.6 19.1 5.0 1.92

ScanDir 17.2 5.2 17.8 7.9 3.13

ReadAll 28.3 2.0 28.8 2.0 1.70

Make 327.6 0.4 328.1 0.7 0.15

Overall 395.2 0.4 396.9 0.9 0.45

Table 6.1: Modified Andrew benchmark results running on kernels using the

vnode and the 405 interfaces. Time values (in seconds, accurate to one second)

are the means of elapsed time from thirty sample runs; %RSD indicates the

percent relative standard deviation (σX/µX); overhead is the percent overhead

of the new interface. High relative standard deviations for MakeDir are a result

of poor timer granularity.

the fewer number of file system operations done per unit time by this phase of

the benchmark.

To exercise the interface more strenuously, we examined an additional bench-

mark. This benchmark employed two phases, the first doing a recursive copy and

the second a recursive remove. Both phases operate on large amounts of data (a

4.8 Mb /usr/include directory tree) to extend the duration of the benchmark.

Because we knew all overhead occurred in the kernel, we measured system time

(time spent in the kernel) alone. This greatly exaggerates the impact of layering,

since all overhead is in the kernel and system time is usually small compared to

elapsed time (“wall clock” time, what a user actually experiences). As can be

seen in Table 6.2, overhead averages about 1.5%.

6.1.3 Multiple layer performance

Since the stackable layers design philosophy advocates using several layers to

implement what has traditionally been provided by a monolithic module, the

cost of layer transitions must be minimal if it is to be used for serious file system

implementations. To examine the overall impact of a multi-layer file system, we

analyze the performance of a file system stack as the number of layers employed

changes.

To perform this experiment, we began with a kernel modified to support the

69

Vnode interface 405 interface Percent

Phase time %RSD time %RSD Overhead

Recursive Copy 51.57 1.28 52.54 1.38 1.88

Recursive Remove 25.26 2.50 25.48 2.74 0.89

Overall 76.83 0.87 78.02 1.33 1.55

Table 6.2: Recursive copy and remove benchmark results running on kernels using

the vnode and 405 interfaces. Time values (in seconds, accurate to one-tenth of a

second) are the means of system time from twenty sample runs; %RSD indicates

the percent relative standard deviation; overhead is the percent overhead of the

new interface.

405 interface within all file systems and the vnode interface throughout the rest of

the kernel4. At the base of the stack we placed a conventional Unix file system,

modified to use the 405 interface. Above this layer we mounted from zero to six

null layers, each which merely forwards all operations to the next layer of the

stack. Upon those file system stacks we ran the benchmarks described in the last

section. This test illustrates a particularly demanding use of layers since each

layer provides full layer overhead without any additional functionality.

Figure 6.2 shows the results of this study. As can be seen, performance varies

nearly linearly with the number of layers used. The modified Andrew benchmark

shows about 0.3% elapsed time overhead per layer. Alternate benchmarks such

as the recursive copy and remove phases, also show less than 0.25% overhead per

layer.

To get a better feel for the costs of layering, we also measured system time,

time spent in the kernel on behalf of the process. Figure 6.3 compares recursive

copy and remove system times5. Because all overhead is in the kernel, and the

total time spent in the kernel is only one-tenth of elapsed time, comparisons of

system time indicate a higher overhead: about 2% per layer for recursive copy

and remove. These overheads were computed by least squares fits to the sample

data, yielding good correlations of 0.9 for the system time benchmarks, and 0.7

to 0.9 for elapsed times. Slightly better performance for the case of one layer in

Figure 6.3 results from a slight caching effect of the null layer over the standard

UFS. Differences in benchmark overheads are the result of differences in the ratio

4To improve portability, we desired to modify as little of the kernel as possible. Mapping

between interfaces occurs automatically when the file system is entered.
5The timing method employed in the modified Andrew benchmark does not include system

time statistics.

70

0

5

10

15

0 1 2 3 4 5 6

O
ve

rh
ea

d
pe

r l
ay

er
 (p

er
ce

nt
)

Number of layers

MAB Overall
cp real
rm real

Figure 6.2: Elapsed time of recursive copy/remove and modified Andrew bench-

marks as layers are added to a file system stack. Each data point is the mean of

four runs.

between the number of vnode operations and benchmark length.

We draw two conclusions from these figures. First, elapsed time results in-

dicate that under normal load usage, a layered file system architecture will be

virtually undetectable. Also, system time costs imply that during heavy file

system use a small overhead will be incurred when numerous layers are involved.

6.2 Layer Implementation Effort

The goal of stackable file systems and this interface is to ease the job of new

file system development. Clearly, importing functionality from existing layers

saves a significant amount of time in new development. Ficus, for example,

borrows network transport and low-level disk storage facilities from pre-existing

file systems, for great savings in implementation effort.

We address the issue of file system development effort in several different

ways. First, we compare development of similar file system layers under the

71

0

5

10

15

0 1 2 3 4 5 6

O
ve

rh
ea

d
pe

r l
ay

er
 (p

er
ce

nt
)

Number of layers

cp sys
rm sys

Figure 6.3: System time of recursive copy/remove and modified Andrew bench-

marks as layers are added to a file system stack. Each data point is the mean of

four runs.

72

lower

pass−through

layers

Figure 6.4: A mounted pass-through layer.

existing vnode interface with development in the 405 interface. Then we discuss

observations on the development of several layers by those previously unfamiliar

with file system layering. We then examine the implementation of these layers

in detail to see what about the new interface improves the development cycle.

Finally, we discuss the use of layering for a large scale file system project.

6.2.1 Minimum layer development

A first concern when considering development under the 405 interface was that

it would prove more complicated than existing interfaces. Most other program-

mer interfaces do not support extensibility; would this feature make the interface

significantly more difficult to use? To evaluate the complexity of the new inter-

face, we will compare two similar file system layers, one implemented under Sun’s

vnode interface and the other under the 405 interface.

To simplify comparison, we chose to compare a basic “pass-through” layer.

Such a layer merely aliases its lower layer. Because the new layer has a second

name, the effect is to duplicate a portion of the file system namespace in two

places6. Figure 6.4 illustrates this duplication.

6An unusual characteristic of these layers is that they duplicate the entire namespace over

which they are mounted. Most layers choose not to exceed subtree boundaries.

73

loopback merge

module file system layer difference

node.h 10 12 +2

info.h 25 37 +12

subr.c 200 199 −1

vfsops.c 135 173 +38

vnodeops.c 373 211 −162

total 743 632 −111

node.h defines the vnode structure for that file system.

info.h provides declarations for mounting.

subr.c implements node management and other utility routines.

vfsops.c implements the file system mount protocol.

vnodeops.c provides all vnode operations.

Table 6.3: Number of lines of comment-free code needed to implement a

pass-through layer or file system, and a brief description of each software module.

The loopback file system implements these features in the standard SunOS 4.0

kernel. It explicitly forwards each operation to the lower layer.

Under the 405 interface, the merge7 layer performs a similar function. This

layer takes advantage of the features of its interface, using a bypass routine and

automatic interface configuration.

Table 6.3 shows the number of lines of C code needed to implement the loop-

back file system and the merge layer. The amount of support code needed for

each implementation is very similar, as are layer configuration protocols. The

merge layer implementation for vnode operations is much shorter, however, since

the loopback file system requires special case code to pass each operation down

while the merge layer uses a bypass routine. The services the merge layer provides

are also more general, since the same implementation will automatically handle

the addition of future operations.

For the example of a pass-through layer, the merge layer provides better

functionality with fewer lines of code. We expect this trend to be even more

marked in more sophisticated file systems, where the ability to reuse existing

functionality without source code changes offers a clear savings in implementation

7A merge layer is a null layer which has been modified to pass over mount points in its lower

file system. This is done to maintain similarity with the loopback file system.

74

effort.

6.2.2 Layer development experience

The best way to demonstrate the generality of a new design technique is to apply

it widely. Breadth of use by different people, and for different problems is the

best way to show wide applicability. To gain wider experience with stackable

layers, and particularly to evaluate its use by those other than its developers, the

opportunity to develop file system layers was made available to students of an

operating systems class at UCLA.

The class was a ten-week graduate seminar on distributed operating systems

offered Winter Quarter, 1990. Taught by Gerald Popek and Tom Page, lectures

included a one-hour lecture on Ficus and a one-hour student presentation on

stackable layering, in addition to a wide discussion of distributed file systems and

operating systems in general.

Of the class, seven students elected to do file system layering projects. All

students were graduate students enrolled at UCLA. All were proficient program-

mers, while kernel programming experience ranged from none to considerable.

The group divided into two two-person teams and three individual projects. To

aid them in their task, each team was provided with an out-of-kernel develop-

ment environment and a null layer (see Section 5.1) as a framework for their

development.

All projects succeeded in provided functioning prototype layers. Prototypes

include a file-versioning layer, an encryption layer, a compression layer, a “lap-

top” layer designed to support second class replication, and a consistency layer

providing NFS cache coherence via token passing. Other than the consistency

layer, each was designed to stack over a standard UFS layer, providing its service

as an optional enhancement.

Self-estimates of development time ranged from 40 to 60 person-hours. This

figure includes time to become familiar with the development environment, as

well as layer design and implementation.

Although just prototypes, each of these layers provide full layer functionality.

All were usable as normal file systems by all user-level programs, seemingly no

different from well established, kernel resident file systems. Each (except for

consistency, which is NFS-specific) will run over several different lower layers and

automatically adapts to future changes in the interface.

Since the end of the class, the encryption layer has been successfully demon-

strated in the kernel, and the consistency layer has always run there. The only

75

factor complicating moving layers into the kernel is typically library function

availability, although concurrency control is also an issue.

We consider this a powerful example of the ease of development offered by

layer interfaces. Previously, new file system functionality required in-kernel mod-

ification of current file systems, requiring knowledge of current, multi-thousand

line file systems and unsophisticated kernel debugging tools. Instead, students in

the class were able to provide significant new capabilities with knowledge only of

the layer interface and programming methodology.

6.2.3 Layer development examples

Our experience with class development of layers proved very encouraging. It was

possible for new layer prototypes to be developed by non-experts in a matter of

weeks. We wanted to examine this matter more closely. What features of the

new interface were proving most valuable? How were layered file systems being

implemented? What is the structure of new file system layers?

To characterize the structure of new layers, we chose to examine the complex-

ity of each software module making up several different layers. Table 6.4 shows

the number of lines of comment-free code in each module of several class layers.

Further analysis is needed to draw useful conclusions from these figures. To

better summarize the data, Table 6.5 breaks the code to new layers into several

categories. “Core” represents fundamental layer routines such as node allocation,

basic operations, and layer configuration. Core routines all come directly from

the null layer. “Core changes” are modifications to core data structures and

routines, typically additions to data structures and initialization code. “Interface

changes” represent changes to the semantics of the current interface (standard

operations which are overridden). “Interface additions” are lines of code to add

new operations to the interface. “Layer specific” represents code necessary to

support the additional functionality the new layer provides.

Several conclusions can be drawn from this data. First, it is clear that a core

of software is central to each layer. The node management and layer configuration

code (subr.c and vfsops.c) survive almost completely unchanged in all of these

file system layers. One possible future step would be to place this code into

library routines.

An important feature of this core is that it represents a basic groundwork that

is guaranteed correct. Because of this, simple things really do become simple in a

layered design. The umap layer does the logically trivial task of translating user-

ids between different administrative domains during remote access. This task is

76

null umap encryption compression consistency

module layer layer layer layer layer

node.h 8 8 11 13 54

info.h 23 32 24 30 35

subr.c 100 100 110 102 104

vfsops.c 160 170 164 160 181

vnodeops.c 197 245 253 458 278

encr key.c — — 265 — —

compr compression.c — — — 84 —

compr fixfn.c — — — 89 —

compr pkg.c — — — 278 —

compression.h — — — 9 —

comprfs priv.h — — — 6 —

consistent interface.int — — — — 22

consistent token.c — — — — 323

consistent token.h — — — — 2

total 488 555 827 1229 999

Table 6.4: A comparison of several file system layers by lines of C code.

null umap encryption compression consistency

module layer layer layer layer layer

core 488 488 488 488 488

core changes 0 19 18 14 83

interface changes 0 48 56 261 81

interface additions 0 0 0 0 22

layer specific 0 0 265 466 325

total new code 0 67 339 780 511

total 488 555 827 1229 999

percent changes

layer specific — 0 78 63 67

Table 6.5: A evaluation of file system layers by lines of C code.

77

as trivial a layer as it should be, only 67 additional lines of code are required

beyond the null-layer core.

Layered design also simplifies more complex project development. The en-

cryption, compression, and consistency layers were all developed in about 900–

1200 lines of code. Once again, a significant portion of this was an automatically

generated set of core routines. Furthermore, changes to the core were minimal

(as indicated by the “core changes” and “interface changes” rows of Table 6.5).

For these file systems, most changes were layer specific, rather than modifications

to the core itself, as shown by the “percent changes layer specific” row. The only

exception is the compression layer, where a high 261 additional lines of opera-

tion handling code was required because of the implementation choice to encode

information in filenames.

These layers also serve as an important example of the modularity of layered

development. Because each layer relies on the services provided by existing layers,

layers can often be implemented in only about 1000 lines of code. If instead they

were implemented as direct changes to existing file systems, we hypothesize that

there would be about 600–900 lines of modifications and additions dispersed

throughout a 10,000 line file system. This traditional approach requires a much

greater knowledge before development begins: 10,000 lines of code rather than

a 30 operation interface. It also complicates testing and quality assurance by

making all existing code suspect for errors, rather than just the code of the new

layer.

Examining these layers also revealed a few weak points of the current devel-

opment environment. Only one new layer added an operation, the consistency

layer. There are several factors contributing to this. First, because these layers

are only class prototypes, work-arounds to avoid new operations were acceptable,

particularly given the one-month effective development time constraint. Instead

of adding new operations, the encryption layer handled new information at mount

time, and the compression layer relied on direct access to the lower-level layer

and encoding information in the filename. A second reason is that installation of

new operations is more difficult than it needs to be. A new operation currently

requires installation of a new kernel, even in the out-of-kernel environment8. We

plan to simplify this by supporting dynamically loaded kernel operations and

layers in the near future.

Another problem we encountered is one we had met before. Many layers need

8For user program to access the new operation, it must pass through the kernel to the out-

of-kernel server. For an operation to be transported through one address spaces to another,

each intermediate layer must be aware of the operation and its arguments to handle the RPC.

78

to store some additional information about each file. Compression, for exam-

ple, needs to record the particular compression algorithm used, and encryption

needs to store the per-file key. Current layers handle this in an ad hoc fashion,

typically transparently stealing some space from the beginning of file data stor-

age. A more general solution is clearly needed, providing general purpose per-file

attribute functionality similar to file resource forks in the Macintosh operating

system [App85].

6.2.4 Large scale example

The previous section discussed our experiences in stackable development of several

prototype layers. This section concludes with the the results of developing a

replicated file system suitable in practice for daily use.

Ficus is a “real” system, both in terms of size and use. It is comparable

in code size to other production file systems (12,000 lines for Ficus compared

to 7–8,000 lines of comment-free NFS or UFS code). Ficus has seen extensive

development over its two-year existence, and it is now in daily use at UCLA for

its developers’ home file storage.

Stacking has been a part of Ficus from its very early development. Ficus has

provided both a fertile source of layered development techniques, and a proving

ground for what works and what doesn’t.

Particularly valuable in Ficus are the concepts of cooperating layers, an exten-

sible transport layer, and out-of-kernel development. The concept of cooperating

layers is fundamental to the Ficus architecture, and has succeeded in locating

necessary portions with both the user and the data. Between the Ficus layers,

the optional transport layer has provided easy access to any replica, leveraging

location transparency well. Finally, the out-of-kernel debugging environment has

proved invaluable, saving months of development time. The first reaction to

finding a bug is often repeating the bug in the user-level Ficus version.

As a full-scale example of the use of stackable layering and the 405 interface,

Ficus validates the success of these tools for file system development. Layered

file systems can be robust enough for daily use, and the development process is

suitable for long-term projects.

6.3 Summary

This chapter evaluated the performance of file system layering, by considering the

performance of individual layers and file system stacks. It also considered how

79

layering can improve the file system development by allowing code reuse and out-

of-kernel development. To summarize the development environment, consider the

comments of one of the students who developed a file system layer [Kue91]:

For me, the really big advantage of the stackable layers was the ease

of development. Combined with the ook [out-of-kernel] development,

the testing cycle was vastly shorter than other kernel work I’ve done. I

could compile, mount, debug, and unmount in the time that it would

have taken to just link a kernel, and of course I had dbx available

instead of struggling with lousy kernel debuggers.

80

CHAPTER 7

Related Work

81

Previous chapters have examined file system layering from a variety of perspec-

tives, including the inter-layer interface, methods of using layering, and the per-

formance of layered file systems. This chapter attempts to place stackable file

systems in perspective with similar work on operating system interfaces. In par-

ticular, we examine the 405 interface and layering with respect to four existing

file system interfaces.

Sun’s vnode interface is an example of basic “file system switch” approaches

to file system modularity. Such a design serves as the basis for our stackable file

system work, and so requires careful consideration.

After examining this, we consider David Rosenthal’s work with stacking vnode

interfaces. Although similar in goals to our work, it differs significantly in detail.

MachObjects is an object-oriented interface targeted at a variety of kernel-

level mechanisms. It addresses several of the extensibility issues raised in this

work, but provides a different model for construction of new file systems.

The x-kernel is a completely new kernel designed around the idea of stackable

protocols. Many of their experiences in building stackable network protocols

relate to our experiences in building stackable file systems, and they are now

seeking to apply their approaches to other kernel mechanisms.

These areas are more closely examined in the following sections.

7.1 The Vnode Interface

To separate file system implementations from the rest of the kernel, Sun Mi-

crosystems developed the virtual file system interface [Kle86]. Similar to work at

DEC [RKH86] and AT&T, the vnode interface has the goal to support several

file systems within the same kernel.

These approaches each concentrate on providing multiple file system types in

the same kernel. To this end, they have been fairly successful. DEC’s GFS has

been successful in supporting several very different physical file systems [Koe87].

Sun’s virtual file system has been successful in providing a number of file-system

related features in the SVR4 kernel. These include the BSD Fast File System,

the System V file system, Xenix semaphores, device special files, named pipes

(FIFOs), Streams files, process control (the /proc file system), Sun’s NFS (Net-

work File System), and AT&T’s Remote File Sharing.

This success has not come without cost, however. The constant evolution of

these interfaces has caused problems in maintenance and third party support.

Rosenthal [Ros90] documents this evolution well. The method of interface defi-

82

nition is an important difference between the vnode and the 405 interfaces.

The vnode interface has also been used to do some file system stacking. NFS,

the loopback and translucent file systems can be thought of as two layer file

system stacks. The methods of stack construction and vnode stacking are similar

to those used in the 405 interface. Although stack construction is similar, the

bypass facilities of the 405 interface makes general stacking much easier.

It is more difficult to develop new file systems under the vnode interface

than the 405 interface. Early versions of Ficus were built with an unmodified

vnode interface. Lack of extensibility greatly complicated this early work; the

extensibility of the 405 interface made new development much easier. For detailed

comparison of development and performance of the interfaces, see sections 6.2.1

and 6.1.

7.2 Rosenthal’s Stackable Vnode Interface

Rosenthal of Sun Microsystems developed a stackable vnode interface similar in

concept to the 405 interface [Ros90]. Although both were inspired by Ritchie’s

Streams work [Rit84], differences in focus have resulted in quite different designs

and capabilities.

Differences in the two interfaces fall broadly into differences in stacking and

extensibility. Rosenthal constructs stacks on a file-by-file granularity, and all

users of his system are guaranteed to see identical views of a stack. Rosenthal’s

methods don’t go as far as providing a fully extensible interface, instead providing

interface versioning with a version mapping layer.

7.2.1 Stacking configuration

Rosenthal takes the approach of configuring stacks on a file-by-file basis. He

adds two new vnode operations for this purpose, “push” and “pop”. This fine

granularity offers a great deal of flexibility. Each file in a directory can conceivably

have its own stack, one supporting compression, another replication, and so on.

This flexibility is better than that provided by the 405 interface and per-volume

stack configuration.

While per-file stack configuration is more flexible than configuration at larger

granularities, it is less clear how this level of configuration can be managed. By

per-subtree configuration, the 405 interface exploits already existing configuration

tools (/etc/mtab, /etc/fstab, mount(8)). These tools do not scale to handle the

explosion of entries resulting from per-file configuration. While recent efforts have

83

 disk
partition
 vnode

 file N
vnode

 file 1
vnode

 file 2
vnode

Figure 7.1: Using a vnode to represent a disk partition. The lower vnode could

be a device special file, or perhaps just an ordinary file.

been made to divide file system mount information into more manageable chunks

(Ficus autografting [PGP+91], for example), these approaches typically require

special purpose underlying file systems or file system layers. A file system with

extensible file attributes could conceivably also serve to store stack construction

information, but no such systems are currently available.

Another problem with the push and pop operations described in Rosenthal’s

paper is that they are specialized to linear stacks. “Push” stacks one vnode over

another, pop removes it. It is not clear how these operations generalize to support

fan-in and fan-out of vnode trees. Both fan-in and fan-out have important ap-

plications, for example, disk mirroring requires fan-out (see Figure 2.2, page 14),

and using a single vnode to represent a disk partition requires fan-in (Figure 7.1).

7.2.2 Stack view consistency

Rosenthal’s method of vnode stacking also provides a philosophically different

interface to its clients. He adopts the principle that all clients should always see

the same view of a stack. To accommodate this, user operations performed on

any vnode in a stack are handled not by the requested node, but are forwarded

transparently to the top of the stack. (See Figure 7.2.) This compares to the

405 interface where operations are always handled by the vnode to which they

are applied and the naming system is used to direct client actions to the correct

layer of the stack1.

1Different stack layers have different names; user operations are presumably directed at the

name for the top of the stack.

84

upper
vnode

lower
vnode

v_top

v_top
user
vnode
pointer

Figure 7.2: Rosenthal’s stacking method forwards all user operations through the

“v top” pointer to the top of the stack.

This approach has two advantages over that used by the 405 interface. A

minor advantage is that it is easy to have “anonymous” layers, layers without a

name. Because the 405 interface merges naming and layer creation, each layer

must have a name. Occasionally, dummy names must be generated for intermedi-

ate layers. On the other hand, requiring all layers to be named provides a certain

regularity.

More important is that very dynamic stack manipulation is possible, since all

users are always assured of seeing the same top layer. For example, one could

push a measurement layer on top of an already-running stack and immediately

begin collecting performance measurements. This is an attractive alternative to

forcing everyone to stop using a file system, mounting the measurements layer,

and then allowing everyone to continue2. (Which is in turn more attractive than

forcing everyone to log off of the system, installing a specially instrumented kernel

and then rebooting, as was required before file system layering.)

Another important use of this very dynamic stacking is handling mount points

and special file types. Currently, device special files, named pipes, and other file-

system name-space objects are handled by special purpose file systems. While

this separates implementation of these objects from the rest of the file system,

current physical file systems must have special purpose code to transparently

stack these new vnodes over the underlying disk vnode. In addition, special

purpose code is required to handle mount points, transitions from one subtree

to another. In Rosenthal’s design, this special purpose code can be replaced by

vnode stacking. Since operations are always forward to the top of the vnode stack,

2Presumably the same name could be presented to the user for both the lower layer and the

measurements layer by (for example) manipulating symbolic links.

85

special files can simply be pushed on the top of the stack. User operations on the

physical file system will find the disk storage vnode for the special file, but all user

operations on this physical-level vnode will be automatically intercepted by the

special vnode on the top of the stack. Mount points will be handled similarly,

operations transparently arriving at the subtree, rather than the mounted-on

directory. In Figure 7.2, the lower vnode would be the mounted-on directory and

the upper vnode would be the root of the mounted subtree.

Several problems arise with this form of dynamic stacking, however. Inherent

with the idea that all users see the same view of a stack is the concept that no users

can see different views. There are times when it is useful to have different views

of a stack. Multi-layer access, described in detail in Section 4.5, is particularly

useful for system maintenance tasks such as backups and debugging.

Rosenthal accomplishes dynamic stacking by forwarding all user operations

to the top of the stack. However, operations between stack layers must not be

forwarded, or an infinite loop would result. Therefore, two different methods

must be provided to invoke each operation, or perhaps two sets of operations can

be provided. “User” operations (or operations invoked in the “user” way) will

be automatically forwarded, while “system” operations are not. This approach

complicates the programming model.

Operations are forwarded to the top by indirecting each through a v top

pointer to the top vnode. When layers are pushed or popped, all v top pointers

in each vnode of the stack must be atomically changed. This adds to overhead

and complicates implementation in symmetric multiprocessing implementations,

because each stack must be protected by a readers/writer lock. In fact, stack

locking overhead is a problem with current implementations of dynamic stack-

ing [Ros90]. Since a top-of-stack pointer is not required in the 405 interface,

no locking is required for the stack as a whole, and currently successful vnode

locking techniques [LPLF91, CBB+91, LBLM90] can be used within each layer

of the stack in multiprocessor implementations.

The most significant problem with this method of dynamic stacking is that

for many stacks there is no well defined notion of “top-of-stack”. Stacks with

fan-in have multiple stack tops. Encryption is one service requiring fan-in with

multiple stack “views”, as described in Section 4.5. It is not correct in general to

send forward an operation on the lower layer to any particular upper vnode, or

even to all. Furthermore, with transport layers, the correct stack top could be in

another address space, making it impossible to keep a top-of-stack pointer.

Finally, it should be noted that there are very few layers which make sense

to dynamically push on top of a user’s stack. Nearly all file system layers change

86

the semantics of the stack, encrypting, decompressing, or otherwise altering stack

data. Pushing such a layer on an existing stack already in use makes little sense;

the user’s view of file contents will dramatically change. The semantics-altering

stack layer should have been part of the user’s stack from stack creation if its

functionality is desired. The only layers which make sense to pop on and off

during file use are semantics-free layers. There are few useful semantics-free

layers other than measurement collecting and caching layers.

7.2.3 Interface extensibility

A final difference between Rosenthal’s vnode interface and the 405 interface relate

to extensibility. Rosenthal discusses the use of an versioning layer to map between

different interfaces. While versioning layers work well mapping between slightly

conflicting semantics or syntax, they becomes quite cumbersome as the number

of interface modifications grows. Because they do not offer the full extensibility

of the 405 interface, a separate layer must map between each pair of different

interfaces. While this is acceptable when there are only a few interfaces, the

potential of multiple third parties changing the interface implies a large number

of slightly different interfaces. The number of version mapping layers grows as

the square of the number of different interfaces.

An alternative is to map all interface extensions to one, common interface.

But if this common interface does not support a bypass routine similar to that

of 405 interface, new operations will be unable to pass through existing layers

without source code changes. Requirements of source code access and change will

greatly restrict layer stacking combinations without bypass capabilities.

7.3 MachObjects

MachObjects [JR89] is an object-oriented package for designing general purpose

operating system interfaces. MachObjects is a macro and library package in C,

running on top of the Mach operating system.

MachObjects uses object-oriented techniques to enable code reuse. Single in-

heritance is supported, allowing automatic reuse of routines. Multiple inheritance

is supported through “delegation”. An important feature is that delegation can

take place across address spaces, providing a means for part of a class hierarchy

to exist in one address space and the remainder in another.

MachObject cross-address space delegation is quite similar to the use of a

transport layer in stackable layers. It illustrates two difficulties in the use of

87

stackable techniques in an object-oriented framework. Simple stackable layers

can easily be described in object-oriented terms. For example, a stack of an

encryption layer over a standard file system can be thought of as making an

encrypted sub-class of normal files. But does “remoteness” make sense as a

“subclass”? If so, how can much more complicated stacks be described in object-

oriented terms? Describing the out-of-kernel development platform (Figure 4.3,

page 48) as subclasses seems quite difficult, for example.

An important difference between the MachObjects implementation and the

stackable file system described in this document is inheritance binding time. In

MachObjects, as in most object-oriented languages suitable for systems-level pro-

gramming, inheritance chains are defined at compile-time. Stackable file systems

delay this binding (stack creation) until mount-time. This important difference

allows configuration of complex stacks with only user-level commands, while the

object-oriented approach would require programming and a kernel replacement.

A final difference between MachObjects and vnode stacking is that file system

stacking is targeted at a very specific kernel interface. Because of this, vnode

stacking can be optimized for its expected use, while MachObjects must remain

a general purpose interface. For example, all vnodes share a common set of

possible operations. This would be undesirable with a general purpose interface

because only a small fraction of operations would be needed by any one class.

7.4 The x-kernel

The x-kernel [HP88, HPAO89] is an operating system kernel designed to simplify

network protocol implementations. Designed to provide easy configuration and

efficient execution, an original goal was to provide unobtrusive customized kernels

for several distributed languages. Since then, the x-kernel has used as a general

purpose tool to explore network and RPC protocol design and configuration.

Recent work has applied the x-kernel ideas to filing environments [PHOR90],

proposing a user-customizable filing name space supporting several file systems

protocols underneath.

The x-kernel’s strengths derive from a uniform, powerful development envi-

ronment. Protocols are the central x-kernel concept. The x-kernel implements

all operating system services as layered protocols. Each protocol is bounded by a

uniform interface, allowing substitution of protocols providing similar semantics.

By supporting run-time selection of protocol stacks, the most efficient protocol

applicable at a given time can be selected. Finally, the x-kernel emphasizes per-

formance, providing very inexpensive transition between layers.

88

These x-kernel characteristics are quite similar to stackable file systems.

Stackable file systems provide a uniform interface between layers. Late bind-

ing is important in stackable file systems to allow experimentation. Efficiency is

also emphasized to promote separation of file systems into composable layers. In-

teresting parallels exist between x-kernel experiences with network protocols and

our experiences with file system stacks, particularly in the difficulty of dividing

existing protocols into multiple, reusable layers.

The primary difference between the x-kernel work and our stackable file sys-

tem work is one of scope. The x-kernel is a complete new kernel design. It

provides a complete new process facility supporting lightweight processes and a

protocol-level kernel interface. Our file system work instead seeks to build on

the existing Unix operating system. Another primary difference is that x-kernel

research has focused primarily on network protocols, only recently addressing

file systems. Our stackable file systems work instead focuses exclusively on file

system design and composition.

7.5 Summary

This chapter has examined the field of file system modularity, focusing on layered

protocols. The breadth of existing work indicates the importance of layered

development and the problems in current development methodologies.

In the construction of the 405 interface, we have chosen to build on the ex-

isting vnode interface. We modify the interface to support third-party addition

of operations, allowing multiple, compatible extensions for new services. We also

provide explicit support for stacking under the interface, including the ability to

identify and forward generic operations to other layers. Together, these facili-

ties encourage independent development of filing services, allowing more rapid

progress and support of services than any existing approach to file system mod-

ularity.

89

90

CHAPTER 8

Conclusions

91

8.1 Contributions

This research presents contributions in both the concepts and the practice of file

system development. We describe the first comprehensive examination of file

system construction from stackable layers. We demonstrate practicality of such

a structure is demonstrated by the construction of several layers with a new,

stackable interface.

This work explores the concept of stackably layered file systems in two ways.

First, we identify the characteristics required of the interface joining stackable

layers. Careful interface design is important because the potential of stackable

layers can easily be limited by an inappropriate interface; conversely, a well de-

signed interface can provide a number of features to make the development of

new layers easy. Second, this work identifies a number of new approaches to file

system design unique to the stackable environment.

The practical aspects of stackable layer design are examined by the devel-

opment of a prototype interface and several file system layers. Nearly a dozen

different file system layers have been developed or prototyped, several are in daily

use. This broad application of layering validates its role as a general purpose tool

for file system design. It also demonstrates the success of development in a lay-

ered environment. Layer construction need be no more complicated than current

methods, and the ability to re-use existing code can dramatically speed develop-

ment. Finally, performance analysis of these layers and their interface indicate

that file system layering has almost no impact on performance as seen by the

user.

8.2 Future Work

This discussion of stackable layering has focused on the design of overall layered

structure and an interface capable of handling a general set of operations. A

few operations are required to support general layering, but operations necessary

for general file system service have not been examined. Several different sets of

operations are currently in use; adoption of a standard group is important to the

interchangeability of file system layers.

A number of existing file systems have been adapted to operate in a layered

environment. Retaining their monolithic roots, these layers do not always provide

the ideal interface for stackable use. Redesign of transport (NFS) and physical

storage (UFS) layers would increase their suitability for layered use. Separation

of the many concepts these layers encompass is necessary.

92

Interface extensibility is critical for third party development. The 405 in-

terface provides extensibility at the operation granularity. Similar extensibility

could be provided at other levels of the file system and its interface. Extensibility

would be desirable within individual operations, allowing modifiers to be passed

along with each operation. Such extensibility might be used to specify unusual

variations to traditional operations, for example, extending name translation to

select between multiple file versions.

Extensibility would also be valuable in the abstractions presented by tradi-

tional file systems. The Unix file system, for example, exports the notion of

a disk partition, individual files, and directory entries referring to files. In our

work with layering we have found it necessary to store persistent data at each of

these levels of abstraction. Standards groups have begun to address the issue of

extensible file attributes, but a uniform solution to the general problem would be

helpful.

Caching is a mandatory part of any file system solution. The interactions of

caching in a layered system are often surprising and can be counter-intuitive. A

careful examination of caching in layered systems would be interesting, particu-

larly considering the interactions of multiple cache layers competing over shared

resources such as physical memory.

Dynamic loading of kernel modules has recently become available in a number

of operating systems. Application of this technology to file system layers should

be relatively straightforward, and would further blur the line between kernel and

user level implementation.

Stackable layering has proven a valuable tool in both terminal and network

processing, and file systems. Application of this technique to other kernel inter-

faces is a possibility. The VFS interface for file systems and disk partitions of

Unix systems is one candidate. An intriguing approach would be to re-classify

file systems as a special class of vnodes.

The ideal granularity for the specification of file system stacks is still an open

question. It is not clear how best to maintain information regarding per-file

stacks. On the other hand, stacking on a per-file basis even greater flexibility

than typed files. Per-file stacking may be one approach to an “object-oriented

file system”. A closer examination of these issues would be useful.

93

8.3 Summary

File system development has long been an area of fruitful research. Unfortunately,

application of this research has been difficult. Implementation of new ideas for

filing services have been slow because new services had to be constructed from

scratch. Even when completed, new services proved difficult to install and support

on the variety of machines prevalent.

Stackable file system development offers an alternative. The ability to build on

existing services means there is no longer a need to re-implement well understood

concepts such as directory services and low-level disk access. Consistent means

of adding new capabilities allows multiple third-party enhancements to cooperate

instead of conflict. Improved modularity helps confine changes and focus testing.

Together, these capabilities offer the potential for broader acceptance of rich new

filing services.

Performance and usability are concerns with any change to basic operating

system services. Through a prototype interface and layers, we have demonstrated

that stackable filing can offer comparable performance to current filing designs,

while offering a superior development environment.

94

References

[ABG+86] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis

Tevanian, and Michael Young. “Mach: A New Kernel Foundation

for UNIX Development.” In USENIX Conference Proceedings, pp.

93–113. USENIX, June 1986.

[App85] Apple Computer, Inc. Inside Macintosh. Addison-Wesley, Reading,

Mass., 1985.

[App88] Apple Computer, Inc. HyperCard User’s Guide. Apple Computer,

Inc., Cupertino, California, 1988.

[Bac86] Maurice J. Bach. The Design of the Unix Operating System.

Prentice-Hall, 1986.

[Bus71] A. K. Bushan. “File Transfer Protocol.” Technical Report RFC-114,

Internet Request For Comments, April 1971.

[Cat90] Vince Cate. “Two Levels of Filesystem Hierarchy on One Disk.”

Technical Report CMU-CS-90-129, Carnegie-Mellon University, May

1990.

[CBB+91] Marc Campbell, Richard Barton, Jim Browning, Dennis Cervenka,

Ben Curry, Todd Davis, Tracy Edmonds, Russ Holt, John Slice,

Tucker Smith, and Rich Wescott. “The Parallelization of UNIX Sys-

tem V Release 4.0.” In USENIX Conference Proceedings, pp. 307–

323. USENIX, January 1991.

[Cla85] David D. Clark. “The Strucutring of Systems Using Upcalls.” In Pro-

ceedings of the Tenth Symposium on Operating Systems Principles,

pp. 171–180. ACM, December 1985.

[Dij67] Edsgar W. Dijkstra. “The structure of the THE multiprogramming

system.” In Proceedings of the Symposium on Operating Systems

Principles. ACM, October 1967.

[Dij68] Edsgar W. Dijkstra. “Complexity controlled by hierarchical ordering

of function and variability.” Working paper for the NATO conference

on computer software engineering at Garmisch, Germany, October

1968.

95

[Flo86a] Rick Floyd. “Directory Reference Patterns in a UNIX Environment.”

Technical Report TR-179, University of Rochester, August 1986.

[Flo86b] Rick Floyd. “Short-Term File Reference Patterns in a UNIX Envi-

ronment.” Technical Report TR-177, University of Rochester, March

1986.

[GHM+90] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page,

Jr., Gerald J. Popek, and Dieter Rothmeier. “Implementation of the

Ficus Replicated File System.” In USENIX Conference Proceedings,

pp. 63–71. USENIX, June 1990.

[Guy91] Richard G. Guy. Ficus: A Very Large Scale Reliable Distributed File

System. Ph.D. dissertation, University of California, Los Angeles,

June 1991. Also published as CSD-910018.

[Hen90] David Hendricks. “A Filesystem for Software Development.” In

USENIX Conference Proceedings, pp. 333–340. USENIX, June 1990.

[HKM+88] John Howard, Michael Kazar, Sherri Menees, David Nichols, Ma-

hadev Satyanarayanan, Robert Sidebotham, and Michael West.

“Scale and Performance in a Distributed File System.” ACM Trans-

actions on Computer Systems, 6(1):51–81, February 1988.

[HP88] Norman C. Hutchinson and Larry L. Peterson. “Design of the x-

Kernel.” In Proceedings of the 1988 Symposium on Commmunica-

tions Architectures and Protocols, pp. 65–75. ACM, August 1988.

[HP91] Norman C. Hutchinson and Larry L. Peterson. “The x-Kernel: An

Architecture for Implementing Network Protocols.” IEEE Transac-

tions on Software Engineering, 17(1):64–76, January 1991.

[HPAO89] Norman C. Hutchinson, Larry L. Peterson, Mark B. Abbott, and

Sean O’Malley. “RPC in the x-Kernel: Evaluating New Design Tech-

niques.” In Proceedings of the Twelfth Symposium on Operating

Systems Principles, pp. 91–101. ACM, December 1989.

[IEE90] IEEE. “Standaard for Information technology—Portable Operating

System Interface (POSIX)—Part 1: System Application Program-

ming Interface (API).” Technical Report IEEE Std. 1003.1-1990,

IEEE, 1990. Also available as ISO/IEC 9945-1: 1990s.

[JR89] Daniel P. Julin and Richard F. Rashid. MachObjects Reference Man-

ual. Carnegie-Mellon University, August 1989.

96

[Kle86] S. R. Kleiman. “Vnodes: An Architecture for Multiple File System

Types in Sun Unix.” In USENIX Conference Proceedings, pp. 238–

247. USENIX, June 1986.

[KM86] Michael J. Karels and Marshall Kirk McKusick. “Toward a Com-

patible Filesystem Interface.” In Proceedings of the European Unix

User’s Group, p. 15. EUUG, September 1986.

[Koe87] Matt Koehler. “GFS Revisited or How I Lived with Four Different

Local File Systems.” In USENIX Conference Proceedings, pp. 291–

305. USENIX, June 1987.

[KP84] Brian W. Kernighan and Rob Pike. The Unix Programming Envi-

ronment. Prentice-Hall, 1984.

[Kue91] Geoff Kuenning. “Comments on CS239 Class Projects.” Personal

communication, June 1991.

[Lan90] Peter S. Langston. “Unix Music Tools at Bellcore.” Software —

Pratice and Experience, 20(S1):47–61, June 1990.

[LBLM90] Alan Langerman, Joseph Boykin, Susan LoVerso, and Sashi Man-

galat. “A Highly-Parallelized Mach-based Vnode Filesystem.” In

USENIX Conference Proceedings, pp. 297–312. USENIX, January

1990.

[LPLF91] Susan LoVerso, Noemi Paciorek, Alan Langerman, and George Fein-

berg. “The OSF/1 Unix File System (UFS).” In USENIX Conference

Proceedings, pp. 207–218. USENIX, January 1991.

[MA69] Stuart E. Madnick and Joseph W. Alsop, II. “A modular approach to

file system design.” In AFIPS Conference Proceedings Spring Joint

Computer Conference, pp. 1–13. AFIPS Press, May 1969.

[MD74] Stuart E. Madnick and John J. Donovan. Operating Systems.

McGraw-Hill Book Company, 1974.

[MJLF84] Michael McKusick, William Joy, Samuel Leffler, and R. Fabry. “A

Fast File System for UNIX.” ACM Transactions on Computer Sys-

tems, 2(3):181–197, August 1984.

[Neu89] B. Clifford Neuman. “Workstations and the Virtual System Model.”

In Proceedings of the Second Workshop on Workstation Operating

Systems, pp. 91–95. IEEE Computer Society Press, September 1989.

97

[OCH+85] John K. Ousterhout, Hervé Da Costa, David Harrison, John A.

Kunze, Mike Kupfer, and James G. Thompson. “A Trace-Driven

Analysis of the Unix 4.2 BSD File System.” Technical Report

UCB/CSD 85/230, UCB, 1985.

[OD88] John Ousterhout and Fred Douglis. “Beating the I/O Bottleneck: A

Case for Log-Structured File Systems.” Technical Report UCB/CSD

88/467, Unviversity of California, Berkeley, October 1988.

[Ous90] John K. Ousterhout. “Why Aren’t Operating Systems Geting Faster

As Fast as Hardware?” In USENIX Conference Proceedings, pp.

247–256. USENIX, June 1990.

[Pag91] Tom Page. “The Umap Layer.” Personal communication, July 1991.

[PGP+91] Thomas W. Page, Jr., Richard G. Guy, Gerald J. Popek, John S.

Heidemann, Wai Mak, and Dieter Rothmeier. “Management of Rep-

licated Volume Location Data in the Ficus Replicated File System.”

In USENIX Conference Proceedings. USENIX, June 1991.

[PHOR90] Larry L. Peterson, Norman C. Hutchinson, Sean W. O’Malley, and

Herman C. Rao. “The x-Kernel: A Platform for Accessing Internet

Resources.” IEEE Computer, 23(5):23–33, May 1990.

[PK84] Rob Pike and Brian Kernighan. “Program Design in the UNIX Envi-

ronment.” AT&T Bell Laboratories Technical Journal, 63(8):1595–

1605, October 1984.

[PR85] J. B. Postel and J. K. Renolds. “File Transfer Protocol.” Technical

Report RFC-959, Internet Request For Comments, October 1985.

[RAA+90] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule,

Michel Gien, Marc Guillemont, Frédéric Herrmann, Claude Kaiser,

Sylvain Langlois, Pierre Léonard, and Will Neuhauser. “Overview

of the CHORUS Distributed Operating System.” Technical Report

CS/TR-90-25, Chorus systèmes, April 1990.

[RFH+86] Andrew P. Rifkin, Michael P. Forbes, Richard L. Hamilton, Michael

Sabrio, Suryakanta Shah, and Kang Yueh. “RFS Architectural

Overview.” In USENIX Conference Proceedings, pp. 248–259.

USENIX, June 1986.

[Rit84] Dennis M. Ritchie. “A Stream Input-Output System.” AT&T Bell

Laboratories Technical Journal, 63(8):1897–1910, October 1984.

98

[RKH86] R. Rodriguez, M. Koehler, and R. Hyde. “The Generic File System.”

In USENIX Conference Proceedings, pp. 260–269. USENIX, June

1986.

[Ros88] David Rosenthal. “A Simple X11 Client Program or How hard can

it really be to write “Hello, World”?” In USENIX Conference Pro-

ceedings, pp. 229–242. USENIX, February 1988.

[Ros90] David S. H. Rosenthal. “Evolving the Vnode Interface.” In USENIX

Conference Proceedings, pp. 107–118. USENIX, June 1990.

[RT74] Dennis M. Ritchie and Ken Thompson. “The UNIX Time-sharing

System.” Communications of the ACM, 17(7):365–375, October

1974.

[SGK+85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and

Bob Lyon. “Design and Implementation of the Sun Network File Sys-

tem.” In USENIX Conference Proceedings, pp. 119–130. USENIX,

June 1985.

[SKS90] David C. Steere, James J. Kistler, and M. Satyanarayanan. “Efficient

User-Level File Cache Management on the Sun Vnode Interface.” In

USENIX Conference Proceedings, pp. 325–332. USENIX, June 1990.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-

Wesley, 1986.

[Sun87] Sun Microsystems. “XDR: External Data Representation standard.”

Technical Report RFC-1014, Internet Request For Comments, June

1987.

[Sun88] Sun Microsystems. “RPC: Remote Procedure Call Protocol specifi-

cation version 2.” Technical Report RFC-1057, Internet Request For

Comments, June 1988.

[Sun89] Sun Microsystems. “NFS: Network File System Protocol Specifica-

tion.” Technical Report RFC-1094, Internet Request For Comments,

March 1989.

[Sun90] Sun Microsystems. “Network Extensible File System Protocol Spec-

ification, draft.” Available for anonymous ftp on titan.rice.edu as

public/nefs.doc.ps, February 1990.

99

[Wu91] Yuguang Wu. “The Measurement Layer.” Personal communication,

July 1991.

[ZDL+90] Lisa Zahn, Terence H. Dineen, Paul J. Leach, Elizabeth A. Martin,

Nathaniel W. Mishkin, Joseph N. Pato, and Geoffrey L. Wyant. Net-

work Computing Architecture. Prentice-Hall, 1990.

100

