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1 INTRODUCTION
Networks face many threats, ranging from DDoS attacks that over-
whelm services, to compromised IoT devices, to vulnerability scan-
ning and intrusion attempts. Many of these problems can be framed
as anomalies that deviate from regular traffic, when attackers strive
to blend in. Further, network managers face the perpetual need for
accurate traffic forecasting to assist them in capacity planning and
other traffic engineering tasks.

The AI revolution provides Machine Learning the opportunity to
address long-standing problems like these that could not be resolved
through deterministic algorithms. In fields such as text recogni-
tion, machine translation, image labeling, and computer games,
machine learning has solved a number of long-term problems. But
machine learning needs rich, diverse and huge datasets for training.
Networking historically lacks such datasets in the public domain.

Can we use Machine Learning to address longstanding problems
in networking and cybersecurity? What are the biggest challenges
to do so? We suggest that there are three barriers to overcome: (1)
broadening collection and distribution of data, (2) improving and
sharing of labels on that data, and (3) evaluating and developing
network-specific features. Our new project, CLASSNET [10], hopes
to contribute to lowering these barriers.

2 DATA COLLECTION AND AVAILABLE DATA
To apply data-centric ML techniques to networking, one must start
with interesting data! To be interesting, first the data must be “real”,
accurately characterizing some aspect of real-world traffic (the
“background”), often including typical natural variation (diurnal
or seasonal patterns). Second, it must contain events relevant to
research: DDoS attacks, phishing attempts, lateral movement, or
other detection targets.

Challenges: Both of these requirements are challenging. Get-
ting real traffic requires access to a live network, but with the
widespread use of the Internet for all kinds of purposes (personal,
private, medical, educational, social), general network traffic is
usually considered privacy sensitive. Ethical research standards
require researchers to obtain informed consent from users whose
traffic they leverage. In a small network (say, a research laboratory),
consent of each user may be possible, but the observed data will
necessarily be specialized, narrow and likely not representative.
Data from a large network (say, a university) will be diverse, but it
will certainly contain sensitive traffic, and it is impossible to obtain
consent from all campus users. (In fact, identifying network users
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to obtain consent itself may increase the privacy risk.) While some
networks include “data available for research” in their standard
terms-of-use, but operational networks often remain hesitant to
share data without additional safeguards. Finally, we know that In-
ternet traffic and network conditions vary greatly [4], so researchers
need data from multiple, diverse, large networks.

Second, we must identify research-interesting events and high-
light them. While small events occur often, identifying them in time
to collect and curate data, on top of other operational requirements,
remains a burden.

Potential Approaches: We suggest that careful data collection
and controlled data sharing can make more data available to the
community.

Thanks to pervasive use of encryption, privacy of most users is
already well-protected in network traffic. While in prior years the
“the Internet” was regarded as unobserved, many general networks
are no longer considered secure, and pervasive monitoring is recog-
nized as a risk that should be addressed through protocol design, as
recommended by RFC7258 [3]. We see evidence of this assumption
through widespread use of TLS for nearly all web traffic, e-mail
exchange, and recently even for DNS [11]. We suggest that most
users understand that wireless networks (e.g. public wifi) require
link-level security, and that encrypted user traffic can be used for
research, if the research is done in a controlled manner.

We also point to non-traditional data sources to complement
live network traffic. Data from “capture-the-flag” hacking compe-
titions is attractive because consent is available from all parties,
and because the contest operator can provide some ground truth.
Partially or completely synthetic datasets can even be of interest for
research use. Mixing known attacks with anonymized real-world
traces can protect user privacy and provide ground truth. While
fully synthetic datasets risk missing important traffic features, they
are still valuable for some research tasks.

Finally, controlled sharing plays an important role in responsible
dataset use. While in prior years data was posted on the public
Internet for use, the richness of modern data raises potential risks.
We recognize that even anonymized data risks leaking some infor-
mation, even if it cannot be traced to an individual [7], suggests
that multiple steps should be taken to protect data sharing. We
recommend basic anonymization in all cases, scrambling at least
part of the IP address and removing any unencrypted payloads. If a
particular research question requires only specific packet fields or
features, dropping other fields and payloads is clearly safer than
preserving them.

An additional layer of defense atop anonymization is to provide
data only to researchers with a clear research need and with a
contractual agreement. While it is important to share data broadly
with the research community, having a written contract between
the data provider and researchers helps identify precisely how the
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data will be used, and by whom. Such an agreement should include
clear rules forbidding de-anonymization of the data. Formal legal
agreements can be difficult to carry out, but provide safety through
legal ramifications for researchers that fail to comply.Written agree-
ments between researchers without formal legal endorsement do
not go as far, but at least clearly state expectations.

We see some hope for providing real-world network data with
controlled sharing. The CRAWDAD project provided wireless data
for a number of years with NSF support [9]. The DHS IMPACT
program operated for nearly a decade, providing networking traces,
DDoS, darknet, and topology datasets for network and security
research [8]. In the CLASSNET project, we hope to build on these
prior efforts to continue to collect and provide these types of data
to researchers—we plan to work with multiple network operators
to provide diverse network data to the community.

3 LABELING DATA
An enabler to recent success in machine learning has been the
use of huge datasets labeled with ground truth—ImageNet [2] for
computer vision and Argoverse [1] for autonomous driving. Unfor-
tunately, networking and security datasets do not have such large
datasets, nor do they contain high quality labels that identify the
malicious actors in the traffic. Building a large, labeled dataset is
very labor-intensive.

One challenge for data labeling is the difficulty in finding inter-
esting events in datasets. Although security events occur frequently,
identifying them in traffic may be difficult. Some may be stealthy,
and some may leverage new attack techniques. Further, if security
events were easy to identify, they would already be removed and
no longer of interest. In addition to the challenge of labeling se-
curity events, the data labeler must also consider benign network
incidents (like flash crowds) that are atypical but not malicious.

We see three paths towards obtaining large and labeled network
datasets. First is to construct synthetic datasets that mix real traffic
with known anomalies. By adding in the anomalies, we can label
them, and by mixing them with real traffic we can provide a rich
background to avoid overfitting during training. Other types of
artificial datasets, such as capture-the-flag data, can also provide
traffic where attacks and background traffic are externally known.
Fully synthetic datasets such as the DARPA IDS dataset are still in
use after more than a decade [6]; while dated and imperfect, they
are relatively large and labeled.

Second, one can leverage commercial tools already running in
a network to label some interesting events, such as cloud-based
DDoS defenses, intrusion detection systems, etc.

Finally, in CLASSNET,we plan to explore collaborative, community-
driven labeling. We accept that there is no perfect ground truth
possible in real data, since one can never guarantee that all events
of interest have been discovered. From this viewpoint, we envision
allowing researchers to apply different algorithms to label the data
and submit their labels into a shared repository. Ultimately each
record will end up having multiple labels, and the users can decide
which labels to use for ground truth. We expect that shared use of a
few specific datasets and their examination by multiple researchers
will help build confidence in label quality, as well as spread the
effort at evaluating these labels.

4 FEATURE ENGINEERING
A final interaction in networking and ML is feature engineering—
selecting which features to extract from the data before used as
input for classification or other machine learning tasks. While clas-
sification algorithms are quite powerful, ultimately they perform
efficient mathematical clustering in some high-dimensional space.
Those dimensions are derived from features extracted from the
data, so careful selection of those features is critical their success.

Networking experts are best prepared to identify potential fea-
tures that exist in networking data and know to extract and possibly
normalize them. As a simple example, one can easily apply n-gram
clustering algorithms by treating fields in packet headers as words.
However, domain expertise in networking may suggest that some
fields are uninteresting. For example, the IP version number and
packet checksums have little value, either because they take on too
few values (IP version is 4 or 6), or they are effectively random (the
checksum). Other fields, like MAC address, are nominally opaque
48-bit numbers, but the upper three bytes indicate a vendor code,
while the rest serve to identify a specific device, – thus, its parts
have very different values when classifying data on a LAN. Simi-
larly, domain-specific knowledge can help distinguish between the
random and payload parts of spam or malware.

On the other hand, ML experts can use their tools to reveal infor-
mation about networking. Given labeled data and a classification
algorithm, one can reverse the process to determine which features
provide the greatest discriminative power, perhaps revealing pat-
terns in network protocols about which we were unaware. And
of course, we look to AI to contribute new ML-based classifica-
tion techniques that are improve efficiency or scalability to large
datasets. These will leverage domain-specific features.

As an example, in ML-based classification of reverse DNS data,
we found a mix of rate-based properties (such as queries per time)
and protocol-specific properties (such as IP address entropy) helped
to classify traffic [5].

5 CONCLUSIONS AND FUTURE DIRECTIONS
AI- and ML-based approaches are already being applied to net-
working Our goal, and the goal of CLASSNET, is to enable deeper
collaboration with relevant data, backed up by labels, to develop
new techniques, features, and methods. To accomplish these goals,
we will careful record or create new rich network datasets, labeled
with known ground-truth or discovered through our manual and
algorithmic label-sharing research platform.
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