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Abstract— Internet protocols frequently create periodic
patterns in traffic. Examples included packets paced by
bottleneck links, periodic exchange of information such as
routing, transport-layer effects such as TCP self-clocking,
and application-level effects. Although measurement of
such periodicities could shed light on Internet traffic, cur-
rent understanding of periodic behavior in general traffic is
quite limited. This paper explores this area by studying the
spectral behavior of these kinds of traffic. Our technique is
completely passive and can be applied to aggregate traces
gathered at various observation points on the network.
Unlike techniques measuring packet inter-arrival time,
our technique does not require per-flow separation. Our
experiments show that the signature of a saturated link
persists in the presence of background traffic or when
we observe only a portion of the traffic through the
saturated link. We investigate how such signatures evolve
as the traffic traverses through the network and identify
the major influential factors that affect the signatures.
Developing a technique to detect saturated links is part
of our future work.

Index Terms— Spectral Analysis, Network Traffic Anal-
ysis, Saturated Links

I. INTRODUCTION

There exist several processes that govern the gen-
eration and shaping of Internet traffic. Some of these
processes are periodic and operate at all communica-
tion layers: at the link layer, periodicities are imposed
due to fixed link speeds; at the protocol layer, due
to behavior such as windowing mechanisms and other
periodic protocol operations such as routing updates;
and at the application layer, due to behavior such as
continuous media transmission. Such periodic processes
imprint a unique periodic signature on their traffic.
Periodicities are visible at several timescales, ranging
from microseconds (e.g., clocking out packets on gigabit
links) to days and years (e.g., diurnal cycles to seasonal
traffic variations).

Studying such periodicities may provide useful in-
formation about the health of a network. For example,
a highly utilized transit or peering link will impose
a strong frequency proportional to the link speed and
inversely proportional to the average packet size. This
signal may be analyzed to distinguish a denial-of-service
attack from congestion due to high normal traffic load.
Typical attacks use very small packet sizes and thus an
attack would impose a much higher frequency compared
to normal traffic of similar intensity Another example is
detecting attacks attempting to overload a web server

through repeated requests. A machine carrying out this
attack will exhibit a strong frequency in requests.

Unlike traditional network analysis techniques, spec-
tral techniques focus on the periodic behavior of a phe-
nomenon and are arguably more informative when ana-
lyzing dynamic behavior. Spectral analysis is a mature
field used in statistics for several decades to detect hid-
den patterns and trends in time-series. Such techniques,
however, have not been widely applied to the analy-
sis of aggregate network traffic. Recent work presents
strong evidence that applying such techniques to the
analysis of network traffic is a very promising approach
to study denial-of-service attacks [1], [2], DNS traffic
behavior [3], traffic anomalies [4], and even protocol
behavior in encrypted traffic [5]. Although this work has
begun to explore the area, there has been relatively little
work in applying spectral analysis to “typical” network
conditions.

In this paper we use spectral analysis to study the
signatures of saturated links. Our long-term goal is to
develop a tool that can examine aggregate traffic to
identify flows that pass through saturated links, even
if the problem is several hops away and obscured by
cross-traffic. Automating such a tool is future work; the
immediate goal explored in this paper is to understand
when a known signal is observable in the spectra of
aggregate traffic when confronted by these challenges.
Such an approach would be advantageous compared to
current techniques such as SNMP data since it is based
on passive measurement, and compared to inter-arrival
studies [6] since it does not require separating traffic
by flow and full spectral analysis can capture more
information from the traffic arrival process.

In our approach, we first collect the time-stamped
packet trace at an observation point, sample it based
on an appropriate sampling rate to produce a time-
series, and then use discrete Fourier transformation to
retrieve prominent frequencies in the power spectrum
which reflect periodic phenomena on the network traffic.
At a high level, we explore the following questions:
(a) are spectral techniques capable of capturing periodic
phenomena on the network? (b) How do they compare
to current techniques, such as histograms of packet inter-
arrival time? (c) What are the influential factors on the
power spectrum and what is their impact?
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II. METHODOLOGY

A. Spectral Analysis

We use the following methodology to analyze the
spectral characteristics of the traffic stream that traverses
a saturate link, which is based on that proposed by
Hussain et al. [1]. First, we use tcpdump to capture
timestamped packet traces from the network. Then we
divide each packet trace into slices of length � . The
length of each slice is a configurable parameter and we
will discuss shortly how to select it.

For each slice, we select a proper sampling rate � and
define the packet arrival process ������� as the number of
packets that arrive in the time period 	�
��
 
����� � where the
time is relative to the start of the slice, and � varies from�

to ����� . This results in ��������� number of samples
in each slice. The selection of a proper sampling rate
is another configurable parameter that we will discuss
shortly. In addition, we subtract the mean arrival rate
before proceeding with spectral analysis in the next step.
The mean value results in a large DC component in the
spectrum that does not provide useful information for
our purposes.

After obtaining a time-series with N samples, we
compute the power spectral density by performing the
discrete-time Fourier transform on the autocorrelation
function (ACF) of the packet steam. The autocorrelation
is a measure of how similar the steam is to itself shifted
in time by offset � [7], [8]. When ��� �

we compare
the packet stream to itself, and the autocorrelation is
maximum and equals to the variance of the packet
stream. When ��� �

we compare the packet stream with
a version of itself shifted by lag � . The autocorrelation
sequence � �!� � at lag � is

" �!� �#�%$'&(�
)+*-,./
021 ���3��45��687���9���3��4;:<� ��6=7���?> (1)

� �!� �@� " �!� �A& " � � � (2)

where 7� is the mean of ����4A� and � is the number of
samples of the packet stream ����4A� . The power spectrum
(PSD) B+�!CD� of the packet stream is obtained by applying
discrete-time Fourier transform to the autocorrelation
sequence of length E :

B+�!CD�@�
F., 021 � �!� �HG

* IKJHLNMO,
(3)

Meanwhile, we calculate the cumulative spectrum P(f)
as the power in the range 0 to f, and normalize P(f) by the
total power to get the normalized cumulative spectrum
(NCS) C(f).

P �!CD�Q�
MR* �.
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B+�����D:SB+���2:�$'�T (4)
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Intuitively, the spectrum BZ�!CD� captures the power or
strength of individual observable frequencies embedded
in the time series, while the normalized cumulative spec-
trum

U �!CD� shows their relative strength. The spectrum
can be compared both across time for consecutive slices
gathered at the same point and across space for slices
gathered at different points on the network to study how
it evolves across time and across the network.

B. Parameter Selection

There are two important parameters in our technique,
the length of each trace slice � , and the sampling rate� . If the slice length is too short, the spectrum will
be sensitive to temporary or transient phenomena on
the network. If it is too long, the arriving process is
unlikely to be stationary. Since we target the spectral
characteristics of a saturated link, we use a default value
of 5 seconds for the slice length.

The sampling rate � is another important parameter.
Given a sampling rate � , the highest frequency that is
observable is �J � according to the Nyquist Theorem. If
the sampling rate is too low, aliasing can occur. Too
high a sampling rate incurs both storage and processing
overhead.

For a given link speed and packet size, one can com-
pute the maximum required sampling rate by computing
the minimum packet inter-arrival time and sampling at
twice that frequency. A more thorough exploration of
varying sampling rate is the subject of future work. In
this paper, unless otherwise stated we select a conserva-
tive rate of 100kHz, which is sufficient to observe 1500
byte packets over a 100Mb/s Ethernet.

III. SATURATED LINKS IN SIMPLE LAB SCENARIOS

Our work is based on the assumption that a highly
utilized link will impose a distinct signature on traffic
traversing the link. In this section we validate our as-
sumption by conducting experiments In simple scenarios
to demonstrate the regularity imposed by saturated links.
We first carry out the experiments with simple topologies
and either zero or light cross traffic. We begin by examin-
ing a saturated link in a simple testbed to investigate the
effects of simple and more complex traffic that saturates
a link.

For these experiments we use two traffic generation
tools, namely Surge [9] and Iperf [10]. Surge is used to
generate synthetic web traffic and Iperf generates con-
trolled TCP and UDP streams, which, for example, can
mimic file downloads (TCP mode) or Constant Bit Rate
traffic (UDP mode). We use tcpdump to record traffic at
various observation points, such as the client, the server,
or some intermediate point. A typical experiment lasts
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for 30 seconds and contains six 5-second long slices.
Although there is some variation in the power spectra
for the six slices, those are small.

A. Single Flow Traffic

We first investigate the spectrum when a single flow
saturates the bottleneck. The experiment topology con-
sists of two PCs connected to the same 100Mbps LAN
and a single Iperf TCP flow running between them and
ensuring that TCP is not window limited and captures
nearly the entire link bandwidth. The observation point
is attached to the the same LAN and passively listens to
the all the traffic on the LAN.

Figure 1(a) shows the full spectrum we observe. This
specific example depicts a single TCP flow using 1500
byte packets saturating a 100Mbps link. In addition to the
fundamental frequency at 7630KHz, the spectra contain
harmonics at multiples of this value. These harmonics
consume a large portion of the energy in the spectrum.
Since at this stage we are not proposing an algorithm
to detect the presence of a saturated link but simply
attempt to show that its signature persists, we first detect
the fundamental frequency visually and then, for clarity,
zoom our graphs to the interesting portion of the spectra,
where the fundamental frequency of the saturated link
lies, as shown in Figure 1(b). Developing an algorithm
that detects a saturated link of unknown capacity is part
of our ongoing work.

Figure 1(c) shows the resulting power spectrum for a
10Mbps link. The fundamental frequency 784Hz, which
is close to the theoretical limit (833 Hz) imposed by a
10Mbps link with 1500-byte packets. We thus conclude
that our methodology is capable of capturing the packet
transmission frequency at a saturated link.

B. Multi-flow Traffic

It is rare for a single flow to saturate high-speed
links. In this section experiments we replace the single
TCP flow with web-like traffic. Web traffic imposes
additional periodicities at the application layer and we
are interested in examining the resulting signature. Since
the link utilization depends on how many web flows
are present, we conduct three experiments, with light,
medium and heavy web traffic through the link.

We use the 10Mbps Ethernet topology and we gener-
ate web-like traffic using Surge [9]. In the first experi-
ment we generate light web traffic by configuring surge
to emulate 10 “user equivalents” (UEs). The resulting
throughput is 0.15Mbps. Figure 2(a) shows the corre-
sponding power spectrum, suggesting three observations.
First, there is no appreciable signal strength at the
dominant link frequency. Second, there are peaks at low
frequencies (well under 100Hz), which correspond to the
web requests and TCP window behavior due to Surge
and TCP. Third, none of the peaks in the spectrum has
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(a) full spectrum with a 100Mbps Ethernet link
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(b) partial spectrum with a 100Mbps Ethernet link
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(c) partial spectrum with a 10Mbps Ethernet link

Fig. 1. Spectral signatures of different speed links

particularly high absolute power. We suggest that this
spectrum is typical of a lightly loaded link.

In Figure 2(b) and 2(c) we increase the load by a
factor of 4 and 32 (to 40 and 320 UEs, respectively).
The throughput of the web traffic is now 2.07Mbps
and 8.21Mbps, respectively. First we observe that the
absolute strength of spectral behavior is now two orders
of magnitude higher than at light utilization. Second, we
observe that as load rises, the dominant link frequency
becomes stronger. At heaviest load there is a noticeable
signal around 800Hz, similar to our single TCP flow.
This experiment demonstrates that the dominant link
signature is independent of number of flows. Instead
it depends only on link bandwidth and packet size
distribution. This is consistent with our first-principles
reasoning that the dominant link frequency represents
transmission of back-to-back packets.
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(a) with very light web traffic (10 UEs)
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(b) with light web traffic (40 UEs)
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(c) with heavy web traffic (320 UEs)

Fig. 2. Spectral signatures at different traffic loads

IV. SATURATED LINKS IN COMPLEX SCENARIOS

In the previous section we investigated the spectral
characteristics of traffic on a saturated link when we
could directly observe that traffic. Since congestion often
occurs deeper in the network than the first hop, this
section evaluates spectral behavior with different obser-
vation points and in the presence of competing traffic.

A. Classifying cross-traffic

Competing traffic will influence the power spectrum
of a saturated link. In Figure 3 illustrates a network that
illustrates several classes of cross traffic that might affect
our observations. We assume traffic travels from source
S to destination D passing through a bottleneck between
R1 and R2, observed at node O. We are interested in
observing the bottleneck signal generated at the R1–R2
link at the observation point. We identify three classes
of cross-traffic:

  A1

 R1  R2

 A2

 R3  O

 A4 A3

 II  III I

S D

Fig. 3. Definitions of types of cross traffic

 R1  R2

DS

B1 B2

Fig. 4. Testbed topology

� Type I (unobserved bottleneck traffic) cross traffic
that traverses the saturated link but does not reach
our observation point. Such traffic carries part of the
energy of the signature imposed by the bottleneck.
Missing this traffic means possible attenuation of
the signal at our observation point.

� Type II (unobserved non-bottleneck traffic) Cross
traffic that is introduced after the saturated link, but
is not observed at the observation point. Such traffic
can distort the signal of the saturated link.

� Type III (observed non-bottleneck traffic) cross traf-
fic that does not go through the saturated link
but reaches our observation point. This traffic may
introduce a false signature.

In the remaining of this section we carry out exper-
iments to investigate the effect of these kinds of cross-
traffic.

B. Testbed Experiments

To evaluate the impact of the three types of cross
traffic identified above, we use the dumbbell topology
shown in Figure 4.

For the first set of experiments, we investigate the
impact of Type I cross traffic. We set the capacity of
all links to 10Mbps. There are two types of traffic,
a single Iperf TCP flow from node S to D and web
traffic generated by surge between nodes B1 and B2.
The observation point is at the link R2-D. We vary the
number of web users in surge to control the volume of
Type I traffic competing with the Iperf TCP flow on link
R1-R2.

Figure 5 shows the power spectrum observed at D
when the number UEs in Surge vary from 10 to 640. The
corresponding throughput at link R1-R2 is always around
8Mbps, while the throughput at link R2-D is decreases
from 8.1Mbps to 5.3Mbps and 2.3Mbps as cross-traffic
increases We can see that as we increase the volume of
Type I cross traffic, the energy around 800Hz becomes
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(b) with light web traffic (80 UEs)
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(c) with heavy web traffic (640 UEs)

Fig. 5. Power spectra as Type I cross-traffic increases

weaker, but still visible. In addition, there is a new spike
around 400Hz caused by packets experiencing queuing
delay at the link R1-R2. The presence of energy at 400Hz
is indicates of contention at the bottleneck link due
to Type I cross-traffic. This phenomena was previously
observed in studies of packet inter-arrival times [6], this
corresponds frequency corresponds to the gap caused
when one full-size packet queues behind another.

For the second set of experiments, we investigate the
effect of Type II traffic. We set the capacity of the S-R1
link to 10Mbps, and the capacity of all other links to
100Mbps. We use the same two traffic sessions, with an
Iperf TCP flow from S to D, and web traffic between B1
and B2. The observation point is again on the link R2-D
and we vary the number of UEs to control the volume
of Type II cross traffic.

Again Figure 6 shows the spectra at link R2-D as load
rises. The corresponding throughput at link R1-R2 is
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Fig. 6. Power spectra as Type II cross-traffic increases

8.78Mbps, 13.41Mbps, and 38.9Mbps, respectively, and
the throughput at link R2-D is steady around 8.3Mbps.
We observe that as we increase the volume of Type II
cross traffic the energy around 800Hz does not change
much, although the spread of the signal grows slightly at
higher loads. This result is because the R1-R2 link is not
saturated and so only a few packets experience queuing
delay there.

Finally we consider the effects of Type III traffic.
We use exactly the same setting in the second set of
experiments, but move the observation point to the link
R1-R2. Figure 7 shows the results at R1-R2 as load
grows. We observe the following. First, the energy over
all the frequency spectrum has increased, as expected.
Second, although the relative visibility of the 800Hz
signal is greatly reduced (both in the PSD and the NCS),
it is still observable in both and has relatively strong
absolute power in the PSD.



USC/CS TECHNICAL REPORT 6

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15
x 10

5 TCP bin=0.01ms (mean=0.007418 std=0.086134)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

Frequency (Hz)

N
C

S

(a) with light web traffic (10 UEs)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8
x 10

5 TCP bin=0.01ms (mean=0.012418 std=0.11484)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

Frequency (Hz)

N
C

S

(b) with light web traffic (80 UEs)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6
x 10

6 TCP bin=0.01ms (mean=0.041942 std=0.22184)

Frequency (Hz)

P
S

D

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

Frequency (Hz)

N
C

S

(c) with heavy web traffic (640 UEs)

Fig. 7. Power spectrum as Type III cross-traffic increases

C. Wide-area network experiments

Although the testbed provides a good environment for
controlled experiments, the topology is still quite limited.
We next validate our testbed observations on the Internet
to consider a wide-area, multi-hop topology and richer,
live background traffic. We placed our observation point
on a router at the edge of USC, mirroring traffic from
Internet-2. Our test flow was sent the University of Santa
Barbara from a PC connected to a 10 Mbps LAN, over
Internet-2, to a host at USC.

Figure 8(a) shows the power spectrum of the aggregate
traffic observed at the monitoring link. The throughput
of the TCP flow was 9.7Mbps, suggesting the bottle-
neck is the LAN at the source. The aggregate traffic
at our monitoring host was 24.2Mbps. The PSD of
Figure 8(a) shows a spike around 800Hz in the PSD
suggests that the bottleneck traffic is visible, even mixed
with aggregate traffic, although it is relatively small in
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Fig. 8. Power spectra of aggregate traffic at USC Internet-2 link

NCS. For comparison Figure 8(b) shows aggregate traffic
alone (taken just after our experiment), showing that the
strongest individual peak (around 40Hz) is less than half
the strength of our bottleneck flow.

In this experiment the bottleneck flow was a relatively
large part of aggregate traffic (about 40%). In future
work we plan to investigate how visible the flow is when
surrounded by greater traffic.

V. RELATED WORK

Much prior work has studied network traffic to infer
certain network properties, including packet delay and
loss [11], link capacity and available bandwidth, bottle-
neck sharing among flows [6], network anomaly [4], and
denial-of-service attacks [1]. In general, these measure-
ments can be classified as either active measurements
or passive measurements. Active measurements typically
introduce probe traffic into the network for the study,
while passive measurements utilize existing network
traffic.

Examples of active measurements include pathchar,
pathload, and Spruce, which are used to infer (available)
bandwidth of a path. They all send out probes into the
network and infer the link capacity or the available band-
width of a path. Pathchar sends different size packets
and utilizes the delay information to infer the hop-by-
hop bandwidth. Pathload infers the available bandwidth
along a path by adaptively saturating the path with packet
trains. Spruce, on the other hand, takes representative
samples of the state of the bottleneck queue by carefully
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choosing the initial spacing between probing packet
pairs. Unlike these tools, our approach is passive.

Passive measurements typically gather traces of ex-
isting network traffic and analyze them using various
methodologies. Katabi and Blake use packet inter-arrival
times to infer the path characteristics such as bottleneck
capacity, and bottleneck sharing among flows based the
observation that the entropy of packet inter-arrival times
is much lower for flows sharing the same bottleneck [6].
Unlike this approach, we compute the FFT of traffic.
On one hand, this is more expensive prospect (although
likely amenable to hardware assistance). The advantage
is that spectral analysis can operate on aggregate traffic
rather than per-flow traffic, as shown in Figure 7.

In recent years, a number of methodologies based on
spectral techniques have been proposed to analyze net-
work traffic. Hussain et al. apply spectral techniques to
packet arrival time series to distinguish single-source and
multi-source DDoS attacks [1], and more recently have
extended this approach to attack re-identification [2].
Barford et al. use wavelets to analyze flow-level informa-
tion to identify frequency characteristics of Dos attacks
and other network anomalies [4]. Spectral analysis has
been used to identify normal TCP traffic which exhibit
strong periodicity around its round-trip time, whereas
attack traffic does not [12]. Partridge et al. apply the
Lomb periodogram technique to retrieve periodicities in
wireless communication, including CBR traffic rate and
the periodicity around FTP round-trip times [5]. We build
on the methodology developed in this prior work, but
apply spectral analysis to bottleneck link detection.

VI. DISCUSSION AND FUTURE WORK

Our preliminary experiments have shown that spectral
analysis techniques are able to detect periodic phenom-
ena in computer networks such as the frequency of a
saturated link. Unlike techniques based on packet inter-
arrival times, spectral techniques can be used to analyze
aggregate traffic to uncover buried periodic phenomena.
This makes these techniques a quite powerful tool in
analyzing network traffic. As future work we plan to de-
velop techniques to detect saturated links and investigate
other periodic traffic phenomena.
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