
IoTSTEED: Bot-side Defense to IoT-based DDoS Attacks
(Extended)

USC/ISI Technical Report ISI-TR-738 June 2020

Hang Guo

hangguo@isi.edu

USC/ISI

John Heidemann

johnh@isi.edu

USC/ISI

ABSTRACT
We propose IoTSTEED, a system running in edge routers to defend

against Distributed Denial-of-Service (DDoS) attacks launched from

compromised Internet-of-Things (IoT) devices. IoTSTEED watches

traffic that leaves and enters the home network, detecting IoT de-

vices at home, learning the benign servers they talk to, and filtering
their traffic to other servers as a potential DDoS attack. We val-

idate IoTSTEED’s accuracy and false positives (FPs) at detecting

devices, learning servers and filtering traffic with replay of 10 days

of benign traffic captured from an IoT access network. We show

IoTSTEED correctly detects all 14 IoT and 6 non-IoT devices in this

network (100% accuracy) and maintains low false-positive rates

when learning the servers IoT devices talk to (flagging 2% benign

servers as suspicious) and filtering IoT traffic (dropping only 0.45%

benign packets). We validate IoTSTEED’s true positives (TPs) and

false negatives (FNs) in filtering attack traffic with replay of real-

world DDoS traffic. Our experiments show IoTSTEED mitigates

all typical attacks, regardless of the attacks’ traffic types, attacking

devices and victims; an intelligent adversary can design to avoid

detection in a few cases, but at the cost of a weaker attack. Lastly,

we deploy IoTSTEED in NAT router of an IoT access network for 10

days, showing reasonable resource usage and verifying our testbed

experiments for accuracy and learning in practice.

1 INTRODUCTION
There is an increasing concern about the security threats that

Internet-of-Things (IoT) devices, such as Internet-enabled light

bulbs and cameras, raise for the Internet ecosystem. The massive

number of IoT devices, together with their often inadequate secu-

rity [10, 11, 66] and even unpatchabilities [68], make them attractive

targets for compromises. One flagrant example is that compromised

IoT devices (as known as“bots”) , besides risking leaking sensitive

information like audio [12, 25] and video recordings [67, 81], could

be used to mount large-scale Distributed Denial-of-Service (DDoS)

attacks and significantly damage Internet security. In 2016, over

100k compromised IoT devices , compromised by IoT malwares Mi-

rai [47], launched a series of record-breaking DDoS attacks, includ-

ing a 620Gb/s attack against krebsonsecurity.com (2016-09-20) [44]

and 1 Tb/s attacks against cloud-provider OVH (2016-09-23) [60]

and DNS-provider Dyn (2016-10-21) [17].

A naive way to defend IoT-based DDoS attacks is to make all IoT

devices secure. However, IoT manufacturers are not incentivized to

produce more secure and likely more expensive products, because

they may see less sales from price-sensitive customers [77, 79].

While there are emerging legislative efforts for enforcing IoT secu-

rity, such as the IoT Cybersecurity Improvement Act of 2019 [42]

requiring minimum security for government-purchased IoT prod-

ucts, these proposals are not yet laws.

Another option is to mitigate IoT-based DDoS attack at victims as

widely explored [1, 4, 8, 35, 39–41, 43, 46, 57, 62–65, 75, 76, 78, 80].

However, due to the large number of IoT devices (5.8 billion in

2020 [19]), and the resulting high volume of attack traffic (at most

1 Tb/s for one attack as of 2016), target-side filtering is very costly

and is only possible for the largest operators today. (For example,

Akamai estimated costs of one defense as millions of dollars [5]).

In this paper, we advocate the third option: defending IoT-based

DDoS attacks at bot-side. The main advantage of bot-side defense is

much lower volumes of attack traffic compared to at the victim. As

a result, bot-side defense is less costly and more likely to cope with

future growth in attack volume. (Bot-side defense also inherently

supports incremental deployment: when deployed in only a fraction

of access networks in the Internet, it still mitigate DDoS traffic at

victim proportionally.)

Our first contribution is to propose IoTSTEED (IoT bot-Side

Traffic-Endpoint-basEd Defense), a system runs in edge routers

to defend against DDoS attacks launched from compromised IoT

devices. IoTSTEED watches traffic that leaves and enters the home

network, detecting IoT devices at home (§2.1), learning the benign

servers they talk to (§2.1), and filtering their traffic to other servers

as a potential DDoS attack (§2.3).

Our second contribution is to validate IoTSTEED’s correctness

with with replay of off-line traffic capture (§3). We validate IoT-

STEED’s accuracy and false positives (FPs) in detecting devices,

learning server and filtering traffic with replay of 10 days of benign

traffic captured from an IoT access network (§3.1). We show IoT-

STEED correctly detects all 14 IoT and 6 non-IoT devices in this

network (100% accuracy) and maintains low false-positive rates

when learning the servers IoT devices talk to (flagging 2% benign

servers as suspicious) and filtering IoT traffic (dropping only 0.45%

benign packets). We validate IoTSTEED’s true positives (TPs) and

false negatives (FNs) in filtering attack traffic with replay of real-

world DDoS traffic (§3.2). Our experiments show IoTSTEED could

mitigate all typical attacks, regardless of the attacks’ traffic types,

attacking devices and victims. An intelligent adversary can design

to avoid detection in a few cases, but at the cost of a weaker attack.

Our third contribution is to deploy IoTSTEED in NAT router of

an IoT access network for 10 days (§4). We show IoTSTEED runs

well on a commodity router: memory usage is small (4% of 512MB)

and the router forwards traffic at full uplink rates. We confirm IoT-

STEED’s accuracy, FPs, TPs and FNs in detecting devices, learning

servers and filtering traffic during on-line router deployment is

similar to what we report in off-line trace-replay validation.

krebsonsecurity.com

Manufacturer Device Type (Model) Alias
Amcrest IP Camera (IP2M-841) Amcrest_Cam

Belkin Smart Plug (Wemo Mini) Belkin_Plug

Dyson Air Purifier (Pure Cool Link) Dyson_Purifier

D-Link IP Camera (DCS-934L) D-Link_Cam

Foscam IP Camera (FI8910W) Foscam_Cam

Foscam IP Camera (R2C) Foscam_Cam2

HP Wireless Printer (Envy 4500) HP_Printer

Samsung IP Camera (SNH-P6410BN) Samsung_Cam

Philips Light Bulb (Hue A19 Kit) Philips_Bulb

TP-Link Smart Plug (HS100) TPLink_Plug

TP-Link Light Bulb (LB110) TPLink_Bulb

Tenvis IP Camera (WH-TH661) Tenvis_Cam

Wyze IP Camera (WYZEC2) Wyze_Cam

Wansview IP Camera (633GBU) Wansview_Cam

Table 1: 14 IoT devices We Own

(We have released IoTSTEED’s source code [28] and the 10-day

benign IoT traffic capture from validation [27].)

2 METHODOLOGY
IoTSTEED follows the observation that IoT devices usually talk to

a small number of benign servers (from our prior work [29, 30]).

By whitelisting these benign servers, it can mitigate suspicious IoT

traffic to all other servers.

IoTSTEED examines packets entering and leaving an IoT access

network from its edge router, detecting IoT devices in this network

(§2.1), learning benign servers these IoT devices talk to (§2.2) and

filtering their traffic to other servers as a potential DDOS attack

(§2.3). IoTSTEED is thus an instance of network anomaly detection

which learns and profiles benign traffic and identifies traffic deviat-

ing from benign profiles as malicious. Prior work has shown that

network anomaly detection does not work well in practice because

profiling highly-variable real-world network traffic is hard [72]. We

show that since IoT traffic is relatively simple, we could at least

profile benign IoT traffic endpoints (§3.1).

IoTSTEED thus focuses on single-purpose IoT devices, such as

smart plugs and cameras, that talk to a small amount of server

names. IoTSTEED does not work with multiple-purpose IoT devices,

such as smart TV, that could talk to hundreds of server names by

installing new applications.

IoTSTEED currently handles IPv4 traffic since our test home

network is v4-only (§3 and §4); adding IPv6 support should be

straightforward. We believe that our results of defending IPv4 at-

tacks (§3 and §4) prove the effectiveness of our system and we leave

defending IPv6 attacks as future work.

2.1 Device Detection
IoTSTEED first detects IoT devices in the access network where

it runs. It later learns the benign servers these IoT devices talk to

(§2.2) and filters IoT traffic to other servers (§2.3).

2.1.1 Overview. IoTSTEED’s device detection follows the observa-

tion that many IoT manufacturers only produce IoT devices. There-

fore it can detect IoT devices by mapping their MAC addresses

Dahua August XiaomiAMCREST

Null Ampak Roborock

Yeelight

YeelinkInsteon

Figure 1: Part of the Directed Graph that Stores Known IoT
Manufacturers and Relatives (Dark and Light Circles)

to their manufacturers and identifying known IoT manufacturer

names (§2.1.2 and §2.1.3). Since IoTSTEED’s detection mis-classifies

non-IoT devices made by IoT manufacturers as IoT, it corrects these

mis-classifications by identifying the large number of server names

these non-IoT devices talk to (§2.1.4).

2.1.2 Collect IoT Manufacturer Names. To detect IoT devices by

comparing their MAC-inferred manufacturers with known IoTman-

ufacturers, we need to collect a list of IoTmanufacturer names. How-

ever, knowing IoT manufacturers is not enough. Some IoT MAC

addresses (about one third of 185 we examine in next paragraph

and about one third of 522 that IoT inspector examines in [36])

get mapped to organizations related to the actual IoT manufac-

turers such as parts makers, original equipment manufacturers

(OEMs) and parent companies of the IoT manufacturers. We call

these “manufacturer-relatives” or simply “relatives”, and collect

relatives for each known IoT manufacturer. When an IoT MAC

address gets mapped to a relative, we can narrow down this IoT

device’s potential manufacturers to a list of manufacturers related

to this relative.

We collect a list of IoT manufacturers and relatives by first col-

lecting a list of IoT MAC addresses with ground truth manufac-

turer names. We find 185 IoT MAC addresses from 67 IoT manu-

facturers based on devices we own (Table 1), public IoT traffic cap-

ture [2, 31, 70], and Google image searches (for example, we search

“smart plug MAC address” for MAC addresses printed on bottom of

smart plugs). We then find relatives for these 67 IoT manufacturers

by looking up these 185 MAC addresses with a MAC-to-vendor

mapping library [49] and identifying lookup results different from

ground truth manufacturer names as relatives. (We ensure the first

three octets of our 185 IoT MAC addresses, which uniquely identify

vendors, are all distinct.) We show 67 of these 185 MAC addresses

(36%) get mapped to 45 distinct relatives. As a result, we obtain 67

IoT manufacturers and 45 relatives.

To expedite finding potential manufacturers for IoT devices

whose MAC addresses get mapped to relatives, we store the re-

lationship between known IoT manufacturers and relatives in a

directed graph. We store each manufacturer and its relatives as

vertices in this graph and connect them with an edge pointing to

this manufacturer vertex from its relative vertices. The resulting

graph (part of which is shown in Figure 1) allows us to identify all

manufacturers related to a relative by identifying all manufacturer

vertices reachable from this relative’s vertex.

We handle two edge cases in building this direct graph. For IoT

manufacturers that are also relatives (such as IP camera manu-

facturers Dahua who also OEMs for other IP camera makers like

2

Amcrest [37]), we label them as IoT manufacturer in our graph

(see “Dahua” manufacturer vertex in Figure 1). and infer they are

also relatives from the fact that their vertices point to other man-

ufacturer vertices in our graph. For IoT manufacturers who use

MAC addresses that cannot be mapped to any organizations, or use

private MAC addresses,we add a special relative (“null” or “private”,

see Figure 1).

Our IoT detection risks being incomplete because our knowledge

of IoT manufacturers and their relatives is limited. In principle, we

could scale up by crowd-sourcing IoT MAC addresses with ground

truth manufacturer names, as shown in [36].

2.1.3 Detect IoT Devices by MAC Lookup. We next detect IoT de-

vices and infer their potential manufacturers by looking up their

MAC addresses and matching the lookup results with our knowl-

edge of IoT manufacturers and relatives.

IoTSTEED detects IoT devices by examining the MAC addresses

of every observed packet, looking up these MAC addresses with

MAC-to-vendor mapping library [49] and identify those whose

lookup results match certain vertices in our graph. (IoTSTEED

classifies the rest MAC addresses as non-IoT devices.) IoTSTEED

considers a MAC lookup result matching a vertex if this vertex’s

manufacturer (or relative) name is a substring of this lookup result

(regardless of case) and every English word in this vertex show up

in this lookup result. (For example, relative name “Physical Graph”

matches lookup result “physical graph corp” because the former

is a substring of the latter and both words “Physical” and “Graph”

show up in the lookup result. In comparison, manufacturer name

“Ring” does not match MAC lookup result “Murata Manufacturing

Co. Ltd” because the word “Ring”, despite being a substring of the

result, does not exist in the result.)

When detecting a new IoT device, IoTSTEED infers its manu-

facturer (or a list of potential manufacturers) by finding all manu-

facturer vertices (directly or indirectly) reachable from the vertex

found by the MAC address. For example, if an IoT device’s MAC ad-

dress gets mapped to parts maker “Ampak” in Figure 1, its potential

manufacturers include “August” and “Xiaomi” who use parts from

Ampak and “Roborock” and “Yeelight” who partner with Xiaomi.

2.1.4 Correct Potential Mis-classifications. IoTSTEED identifies

non-IoT devices mis-classified as IoT (due to some IoT manufac-

turers also produce non-IoT devices) by looking for detected IoT

devices that talk to excessive number of server names. The ratio-

nale is that we find non-IoT devices usually talk to more server

names than IoT devices do (Figure 2). Specifically, if any IoT device

DNS queries more than Tsvr distinct servers names, IoTSTEED

re-classifies it as non-IoT. We set Tsvr as 70 based on examining

10-day operational traffic from 60 IoT devices and 6 non-IoT devices

(we measure our 14 IoT and 6 non-IoT devices, as in Table 1, and

use public traffic pcaps for the remaining 46 IoT devices [2, 31, 70]).

As in Figure 2, we find these 60 IoT devices each queries at most 15

distinct server names (in average 5) while these 6 non-IoT devices

each queries at least 128 distinct server names (in average 451) in

10 days.

 0
 0.2
 0.4
 0.6
 0.8

 1

1 2 3 5 10 20 50 100 250 500 1000 2000

E
C

D
F

Number of Distinct Server Names Queried

IoT Devices non-IoT Devs

Figure 2: ECDF for Number of Distinct Server Names
Queried by 60 IoT and 6 non-IoT Devices in 10 Days

2.2 Server Learning
IoTSTEED next learns benign servers detected IoT devices talk to

(IoT servers). Knowing IoT servers enables it to filter IoT traffic to

other servers (non-IoT servers) as a potential DDoS attack in §2.3.

2.2.1 Overview. IoTSTEED learns IoT servers from all servers de-

tected IoT devices talk to in two rounds: server bootstrapping

(§2.2.3) and expansion (§2.2.4). (IoTSTEED maintains a separate

IoT server list for each IoT device.) IoTSTEED also whitelists a

short list of server IPs that are always considered benign: Google’s

public DNS revolvers (8.8.8.8 and 8.8.4.4) that are often visited by

IoT devices, public IPs of the NAT router where IoTSTEED runs

(since we find IoT devices sometimes talk to router’s public IPs) and

public IPs of the mobile phone used to remote access IoT devices.

2.2.2 Server Identification. To learn IoT servers, IoTSTEED identi-

fies servers by either their DNS names or IP addresses.

IoTSTEED identifies servers mainly by their DNS names because

we find server names to be relatively stable over time while server

IPs could change. We find some devices could visit servers directly

by IPs without preceding DNS queries (such as Google’s public DNS

resolvers 8.8.8.8) and as a result, IoTSTEED identifies these servers

by their IPs (called “IP-accessed servers” hereafter). (We call servers

visited with preceding DNS queries “name-accessed servers”.)

Since IoTSTEEDmainly identifies servers by DNS names but sees

server IPs in traffic, it tracks server name-to-IP mappings based on

DNS resolutions observed from IoT devices. Specifically, IoTSTEED

tracks a list of server names each IoT device talks to based on

server names they queried using type A, AAAA and CNAME DNS

requests. It then extracts server IPs and canonical names for these

server names from corresponding type A and CNAME DNS replies.

(IoTSTEED does not track AAAA DNS replies because it currently

ignores non-DNS IPv6 traffic.)

2.2.3 First-Round Learning: Server Bootstrapping. IoTSTEED boot-

straps a list of IoT servers for every IoT device by classifying all

servers they DNS query (for name-accessed servers) or directly

visit (for IP-accessed servers) shortly after most recent bootup as

benign. The rationale is that we trust recently-bootup devices to

be uncompromised and only talking to benign servers because IoT

malwares usually do not sustain device reboot [3, 20, 22, 52] and

re-infections take time (considering that many malware randomly

scan for infection [3, 21, 52]).

Specifically, after IoTSTEED detects a new IoT device D (§2.1), it

first estimatesD’s most recent bootup time (TD
bt) with the timestamp

of the first packet observed from D and then classifies all servers

3

that D DNS queries or directly visits between [TD
bt ,T

D
bt + Tsp) as

benign, where Tsp is the duration of server bootstrapping.

IoTSTEED’s estimation of TD
bt holds intuitively if D is newly-

acquired and first boot up after IoTSTEED starts. If D is an existing

device, we require the owner to reboot it before starting IoTSTEED

so that IoTSTEED could correctly estimate TD
bt .

We experimentally setTsp as two hours for name-accessed servers

(annotated as T abn
sp). By booting up our 14 IoT devices and observ-

ing them for 10 days, we find that they talk to most (75% or 67) of

their 89 name-accessed IoT servers (blue bars in Figure 3) within

the first two hours after bootup — bootstrapping behavior.

Similarly, we set Tsp as 120 hours for IP-accessed servers (T abi
sp)

because we find 10 of our 14 IoT devices (all except Foscam_Cam,

Amcrest_Cam, Belkin_Cam and D-Link_Cam) talk to most (91% or

30) of their 33 IP-accessed IoT servers (gray bars in Figure 3) within

the first 120 hours after bootup (green area in Figure 4).

The four IoT devices remaining (Foscam_Cam, Amcrest_Cam,

Belkin_Cam and D-Link_Cam) show no such bootstrapping behav-

ior and instead keep visiting new IP-accessed servers even after

bootstrapping period (white area in Figure 4). Our server learning

cannot handle them: bootstrapping-based first round only covers

part of their IP-accessed IoT servers and server-name-based second

round does not apply to IP-accessed servers. We choose to not fil-
ter traffic between these devices and their IP-accessed IoT servers

(called “turn off IP-accessing filtering”) to reduce potential false

positives (FPs) in traffic filtering. (See §2.3 for details.)

We show these four devices’ lack of bootstrapping behavior in

visiting IP-accessed servers is mainly an artifact of UPnP service

in our router. We find three of them (all except Belkin_Plug) set

up static port mappings in our routers via UPnP. (We confirm

Foscam_Cam uses UPnP for remote device accessing but are not

certain about other devices.) As a side effect, they get unsolicited

packets from a large number of remote IPs (574 or 98% of their 586

IP-accessed IoT servers) such as scanners from internet-census.org

and shodan.io. By responding to these unsolicited packets, these

three devices appear constantly talking to new IP-accessed servers.

We support our hypothesis that UPnP causes lack of bootstrapping

behavior by showing that without UPnP, these three devices do

show bootstrapping behavior in a similar 10-day experiment (§4).

For the remaining one device (Belkin_Plug) that does not use UPnP,

its 22 IP-accessed IoT servers are mostly STUN servers for NAT

traversal (73% or 16). One explanation for Belkin_Plug’s lack of

bootstrapping behavior is that it keeps connecting to different STUN

servers IPs for NAT relay services.

UPnP service also explains the large number of IP-accessed IoT

servers (641, as in Figure 3) our IoT devices talk to. The three devices

(Foscam_Cam, Amcrest_Cam and D-Link_Cam) that contributes

to almost all (91%, 586) of these 641 IP-accessed IoT servers all

set up static port mappings via UPnP. We have shown their 586

IP-accessed IoT servers is mainly an artifact of them responding

to unsolicited probes from remote IPs (98%, 574). To support our

hypothesis that UPnP service inflates IP-accessed server count, we

show that without UPNP, our 14 devices talk to only 69 IP-accessed

IoT servers (9× less than 641 servers with UPnP) in 10 days (§4).

While we used public IoT traces [2, 31, 70] for collecting IoT

manufacturer names (§2.1.2) and setting Tsvr values (§2.1.4), we

 0
 10
 20
 30

S
a
m

su
n
g

-C
a
m

P
h
ilip

s_B
u
lb

T
E
N

V
IS

_C
a
m

W
A

N
S
V

IE
W

_C
a
m

W
y
ze

_C
a
m

H
P
_P

rin
te

r

A
M

C
R

E
S

T
_C

a
m

T
P
Lin

k
_P

lu
g

T
P
Lin

k
_B

u
lb

Fo
sca

m
_C

a
m

2

B
e
lkin

_P
lu

g

D
-Lin

k_C
a
m

D
y
so

n
_P

u
rifi

e
r

Fo
sca

m
_C

a
m

S
e
rv

e
r

C
o
u
n
t Name-Accessed Servers IP-Accessed Servers

Figure 3: Distinct Name-accessed and IP-accessed IoT
Servers Our Devices Visit Within 10 Days of Bootup (Am-
crest_Cam,D-Link_CamandFoscam_CamVisit 117, 328 and
141 Servers but Get Cropped for Displaying).

 0
 40
 80

 120
 160
 200

 0 50 100
 150

 200
 250

Foscam_Cam

 0
 40
 80

 120
 160
 200

 0 50 100
 150

 200
 250

AMCREST_Cam

 0
 10
 20
 30
 40
 50

 0 50 100
 150

 200
 250

Belkin_Plug

 0
 80

 160
 240
 320
 400

 0 50 100
 150

 200
 250

D_Link_Cam

 0
 2
 4
 6
 8

 10

 0 50 100
 150

 200
 250

Samsung_Cam

 0
 2
 4
 6
 8

 10

 0 50 100
 150

 200
 250

TENVIS_Cam

 0
 2
 4
 6
 8

 10

 0 50 100
 150

 200
 250

WANSVIEW_Cam

 0
 2
 4
 6
 8

 10

 0 50 100
 150

 200
 250

Wyze_Cam

Figure 4: Distinct IP-accessed IoT Servers Our Devices Talk
to PerHourWithin 10 Days of Bootup (Omitting Six Devices
Talking to No More Than One Server). Green Area High-
lights 120-hour Server Bootstrapping Period.

cannot do that here because these capture do not contain the device

bootup traffic that we need to set Tsp values. (The 10-day measure-

ment we use to select Tsp is different from the measurement we

use to validate IoTSTEED later in §3.)

2.2.4 Second-Round Learning: Server Expansion. After server boot-
strapping period, IoTSTEED only considers a server benign if its

DNS domains resemble one of three classes of common IoT servers

judged per-class rule below.

Manufacturer servers are servers run by IoT manufacturers to

implement core IoT functions such as remote controlling and de-

vice monitoring. Manufacturer servers can usually be identified by

their manufacturer-owned DNS domain. (IoTSTEED already knows

at least a list of potential manufacturer names for each detected

IoT devices in §2.1.) IoTSTEED considers a server name N as a

manufacturer server for IoT device D if any of D’s potential man-

ufacturer name is a substring of N ’s domain (regardless of case).

We define domain of a URL as the immediate left neighbor of the

URL’s public suffix. (We identify public suffix based on the list from

Mozilla Foundation [56]).

Third-party servers are servers ran by non-manufacturers that

provide services such as time (NTP) services and news services to

IoT devices. We find it challenging to identify third-party servers

because they could be specific to device types which we do not

know. IoTSTEED thus only identifies two groups of third-party

servers. The first group of servers are those providing NTP (time)

4

internet-census.org
shodan.io

Tuya Evrythng PubNub Xively Azure IoT
tuyacn evrythng pubnub xively azure-devices

tuyaus pndsn

tuyaeu

Table 2: Eight Domains from Five IoT Platforms

services, which we find common for all types of IoT devices to talk

to. IoTSTEED identifies NTP servers by looking for servers with

either well-known NTP domains (nist.gov and ntp.org) or string

“time” or “ntp” in their sub-domain. The second group of servers are

those run by the same organizations as some bootstrapped third-

party servers. IoTSTEED identifies these servers by their use of

bootstrapped third-party-server domains.

Platform servers are special third-party servers that allow manu-

facturers to implement core IoT functions without setting up their

own servers. Platform servers can be identified by their platform-

specific domain names. IoTSTEED currently looks for eight do-

mains from five IoT platforms, as summarized in Table 2. Four of

these IoT platforms (TuYa, Evrythng, PubNub and Xively) are re-

ported by IoT inspector project [36] based on traffic from 44,956

IoT devices of 53 manufacturers. We also include the IoT platform

from cloud provider Microsoft Azure since it has a unique domain

(“azure-devices”). We do not include IoT platforms from other cloud

providers (Amazon AWS and Google cloud) because their IoT plat-

forms share the same domains (“amazonaws” and “googleapis”)

with their other cloud services and if IoTSTEED considers these

domains benign, IoTSTEED risks allowing DDoS attacks to all their

other clouds services.

Our second-round learning does not apply for IP-accessed servers

due to their lack of DNS names. For these servers, if they fail first-

round learning, IoTSTEED considers them malicious unless they

are visited by devices whose IP-accessing filtering get turned off in

§2.3.

To improve the applicability of second-round learning to IP-

accessed servers, IoTSTEED keeps monitoring if any queried server

names get resolved to any IP-accessed server IPs: if found, IoT-

STEED assigns this server name to this IP-accessed server and

re-learn this IP-accessed server with both round of learning as if it

is a name-accessed server.

2.3 Traffic Filtering
IoTSTEED defends potential DDoS attack by passing traffic between

IoT devices and IoT servers learned in §2.2.4 and dropping IoT traffic

to and from all other servers. Upon dropping traffic from some IoT

devices, IoTSTEED notifies device owners about the potential device

compromise through its user interface.

For devices that show no bootstrapping behavior and instead

keep talking to new IP-accessed servers, IoTSTEED turns off their

IP-accessing filtering by passing all traffic between them and their

IP-accessed servers. By doing so, IoTSTEED avoids dropping benign

traffic to IP-accessed IoT servers that it fails to learn (false positives)

but risk allowing these devices to attack server IPs (false negatives).

To detect devices that show no bootstrapping behavior, IoT-

STEED looks for devices that keep talking to new IP-accessed

servers both during and after server bootstrapping period (judged

by Equation 1). We use A(x) to annotate the number of distinct

IP-accessed servers a given IoT device D talk to between period

[TD
bt ,T

D
bt + x), excluding whitelisted server IPs in §2.2.1. IoTSTEED

considers D as lacking bootstrapping if at any time TD
bt + t after

server bootstrapping (meaning t > T abi
sp), the average rate that D

talks to new IP-accessed servers after bootstrapping (Rt in Equa-

tion 1) is larger than a threshold. We set this threshold as a fraction

(r in Equation 1, empirically set as 50%) of the average rate that D
talks to new IP-accessed servers during server bootstrapping pe-

riod (Rsp in Equation 1). IoTSTEED does not turn off IP-accessing

filtering for devices that do not normally visit IP-accessed servers

(judged by A(T abi
sp) ≤ 2 where 2 is empirical) because it is suspi-

cious if they suddenly talks to some servers by IPs.

Rt > Rsp × r where Rt =
A(t) − A(T abi

sp)

t −T abi
sp

and Rsp =
A(T abi

sp)

T abi
sp

(1)

A compromised device D may try to evade IoTSTEED’s defense

by intentionally probing many server IPs and causing IoTSTEED

to turn off its IP-accessing filtering. One possible way to mitigate

this evasion is to configure IoTSTEED to turn IP-accessing filtering

back on if D talk to new IP-accessed servers at too fast a rate after

bootstrapping (for example, when Rt > 10Rsp).

2.4 Deployment Incentives
Both IoT owners and ISPs have reasons to deploy IoTSTEED.

IoTSTEED incentivizes IoT owners to run IoTSTEED in their

home routers by protecting them from the potential privacy and

security breach resulted from compromised IoT devices. For exam-

ple, a compromised IP camera may leak live footage [67, 81], an

hacked smart lock might lead to robbery [73] and a hacked smart

oven could potentially cause house fire [7]. IoTSTEED protects IoT

owners by constantly monitoring their IoT devices (§2.1 and §2.2)

and notifying them about device compromises (§2.3). IoTSTEED

also prevents IoT devices from talking to suspicious servers (§2.3)

which mitigate the risks of IoT-related privacy breach (consider-

ing, for example, compromised IP cameras may talk to adversarial

servers for transmitting video footage).

IoTSTEED incentivizes ISPs to pre-install IoTSTEED in their

customer premises equipment (CPEs) from two aspects. First is

value-added service: by pre-installing IoTSTEED (which protects

their customers from compromised IoT devices), ISP is effectively

providing an IoT security service. (Survey shows two-thirds of

households with up to ten IoT devices are willing to pay an average

of $6.90 per month for IoT security services [48].) Second is band-

width saving: by rejecting IoT-based DDoS traffic at CPEs, ISPs save

their bandwidth for legitimate user traffic.

2.5 Countermeasures by Knowledgeable
Adversaries

DDoS attacks are launched by criminals who will seek to avoid

detection. We next discuss four possible ways a knowledgeable ad-

versary would try to evade IoTSTEED’s defense. While they show

5

nist.gov
ntp.org

how an knowledgeable adversary can reduce IoTSTEED’s effec-

tiveness, these countermeasures either are difficult, have limited

applicability, or weaken attacks.

First, a bot master could exploit first-round server learning

(§2.2.3) by launching attacks during bots’ server bootstrapping

period and causing IoTSTEED to incorrectly learn attacks as valid

behavior. Such evasion is unlikely in practice. Our bootstrapping

period is a relatively short time window (2 hours or 120 hours after

device bootup, §2.2.3). It is challenging for a bot master to infect

IoT devices, rent out these devices to customers as part of DDoS-

for-a-service infrastructure and launch attacks via these devices all

within this time window.

Second, a bot master could exploit second-round server learn-

ing (§2.2.4) by launching attacks to the three types of common

IoT servers IoTSTEED considers benign in §2.2.3 (such as servers

run by attacking devices’ manufacturers) and causing IoTSTEED

to pass these attacks. IoTSTEED indeed cannot defend bots from

attacking these common IoT servers. However by filtering attacks

to all other servers, IoTSTEED still effectively breaks the economy

of running DDoS as a service. The rationale is that to monetize

DDoS infrastructure, a bot master needs to be able to attack any

servers and not just a few common IoT servers.

Third, a bot master could also exploit traffic filtering (§2.3) by

using bots whose IP-accessing filtering are off to attack IP-accessed

servers and surpassing IoTSTEED’s defense.While IoTSTEEDworks

on most devices (11 or 12 of the 14 devices tested in §3 and §4), it

does not work well on these a few devices. In addition, if UPnP is

disabled, some of these devices become defendable (§4),.

Lastly, a bot master could exploit device detection (§2.1) by dis-

guising bots as non-IoT devices and bypassing IoTSTEED’s defense

(since IoTSTEED does not filter non-IoT traffic). There are two ways

to disguise bots as non-IoT devices: one could spoof bots’ MAC

addresses with some non-IoT MAC addresses (recalling §2.1.3);

one could also make bots query more than Tsvr server names and

cause IoTSTEED to re-classify these bots as non-IoT devices (re-

calling §2.1.4). While disguising bots as non-IoT devices evades

IoTSTEED’s defense, IoTSTEED adds the burden of disguise to bot

makers, making bot operation harder. The need to disguise bots also

weakens the attacks by making bots more suspicious. Disguised

bots could potentially be identified by the pool of non-IoT MAC

addresses bot master use for MAC spoofing or the pool of server

names that bot master makes bots query.

Potentially, we could make the last exploitation difficult to imple-

ment by requiring IoT owners to manually specify MAC addresses

of their non-IoT devices when starting IoTSTEED and treating the

rest MAC addresses as IoT devices. This way, to disguise bots as

non-IoT device, a bot master needs to know MAC address of other

non-IoT devices in the same LAN and spoof their bots with these

specific non-IoT MAC addresses. (We do not currently do so to

minimize manual operations required from IoT owners.)

3 VALIDATION BY TRACE REPLAY
We validate the correctness of IoTSTEED with replay of off-line

traffic capture. We first validate IoTSTEED’s accuracy and false

positives (FPs) in detecting devices, learning server and filtering

traffic with replay of 10 days of benign traffic captured from an IoT

access network (§3.1). We then validate IoTSTEED’s true positives

(TPs) and false negatives (FNs) in filtering attack traffic with replay

of real-world DDoS traffic (§3.2).

We use off-line traffic capture because they enable testing IoT-

STEED with real-world DDoS traffic by replaying DDoS traffic

capture (§3.2). In §4, we test IoTSTEED’s accuracy, FPs, TPs and

FNs in detecting devices, learning servers and filtering traffic with

live traffic from an IoT access network.

3.1 False Positives with Benign Traffic
To understand IoTSTEED’s accuracy in detecting devices (the frac-

tion of IoT and non-IoT devices correctly detected) and FPs in learn-

ing servers (flagging of benign servers as suspicious) and filtering

traffic (dropping of benign packets), we capture 10-day benign traf-

fic from an IoT access network and run IoTSTEED with replay of

these traffic. We show IoTSTEED correctly detect all 14 IoT and 7

non-IoT devices in this network (100% accuracy) and maintains low

false-positive rate: flagging 2% of 642 IoT servers as suspicious and

dropping 0.45% of about seven million benign IoT packets.

Experiment Setup: To test IoTSTEED with benign traffic, we

set up an experimental IoT access network by placing 14 IoT devices

(Table 1) and seven non-IoT devices (two mobile phones, two tablets

and three laptops) in a wireless LAN behind a NAT router. (Our IoT

devices, as in Table 1, are mostly IP cameras because IP cameras

are used in large-scale DDoS attacks [55].) To simulate running

IoTSTEED inside the NAT router, we capture traffic between the

access network and the Internet by running tcpdump in NAT router

(with UPnP service on) for 10 days. Since we require rebooting

existing devices before starting IoTSTEED (§2.2.3), we shut off our

IoT devices and boot them after tcpdump begins. We interact with

our IoT devices daily from one of our mobile phones. (By testing

with only our 14 IoT devices, our experiment is limited in device

coverage. In principle, we could scale up by crowd-sourcing traffic

capture from IoT devices owned by others, as shown in [36].)

Accuracy in Device Detection: We first test IoTSTEED’s ac-

curacy in detecting devices (§2.1). Our definition of accuracy is

(TP + TN)/(TP + TN + FP + FN) where we treat IoT devices as

positives and non-IoT devices as negatives. To get IoTSTEED’s accu-

racy, we compare devices it detects with ground truth and finding

the fraction of IoT and non-IoT devices it correctly detects.

We show IoTSTEED correctly detects all 14 IoT devices and infers

their manufacturers. IoTSTEED infers both Dahua and Amcrest as

Amcrest_Cam’s potential manufacturers because this device’s MAC

lookup result shows “Dahua” which is both an IoT manufacturer

and a relative (OEM) to “Amcrest”, recalling rules from §2.1.3.

We show IoTSTEED correctly identifies all seven non-IoT devices,

resulting in overall 100% accuracy in device detection. IoTSTEED

initially classifies six of these non-IoT devices as IoT because they

come from IoT vendors (five from Apple and one from Samsung).

IoTSTEED later re-classifies them as non-IoT since it observes that

they query more than Tsvr server names (§2.1.4). We show this ini-

tial mis-classification causes incorrect packet loss later this section.

False Positives in Server Learning: We next examine IoT-

STEED’s FPs in server learning (§2.2) and show it maintains low

false-positive rate: flagging a small fraction (12 out of 642 or 2%) of

IoT servers as malicious.

6

ground truth IoT servers from 14 IoT devices 642 (100%)

whitelisted server IPs (all correctly identified) 8 (1%)

enter first-round learning (all correctly identified) 464 (72%)

enter second-round learning 170 (26%) (100%)

correctly identified 158 (25%) (93%)

detected by 3rd-party-svr rule 12 (2%) (7%)

visited by devs without IP-acs fltr 146 (23%) (86%)

mis-identified as malicious 12 (2%) (7%)

Table 3: Server Learning Breakdownwith Benign IoT Traffic

We breakdown server learning results by rounds in Table 3 to

understand what cause the a few FPs. We show that the first-round

learning causes no FP: it tests most (464 or 72%) of 642 ground truth

IoT server and correctly identifies all of them (Table 3). Our second-

round learning causes all the FPs by mis-identifying a small fraction

(12 or 7%) of the 170 IoT servers it tests as malicious. Eight of these

12 FPs are IP-accessed servers and the rest four are name-accessed

servers whose domains (“google” and “opendns”) do not resemble

common IoT servers, judged by rules in §2.2.4.

Lastly, we show that turning off IP-accessing filtering is crucial

for maintaining IoTSTEED’s low FPs in learning servers. IoTSTEED

turns off three devices’ IP-accessing filtering (Samsung_Cam, D-

Link_Cam and Foscam_Cam) because they constantly talk to new

IP-accessed servers (§2.3). We find that most (146 or 86%) of the 170

IoT servers tested by second-round learning are classified benign

(TPs) only because they are visited by these three devices directly

by IP (Table 3). If IoTSTEED keeps these three device’s IP-accessing

filtering on, these 146 IP-accessed servers would be flagged as

malicious (FPs, recalling §2.2.4), resulting in a high false-positive

rate of 25% (158 out of 642) in learning servers. (In §3.2, we show that

the tradeoff of turning off IP-accessing filtering is that IoTSTEED

risks allowing attacks to IP-accessed servers.)

False Positives in Traffic Filtering: We next examine IoT-

STEED’s FPs in filtering traffic (§2.3). We show IoTSTEED’s false-

positive rate is low, dropping only a tiny fraction (33,183 or 0.45%)

of about seven million packets our IoT devices send and receive in

this 10-day measurement.

We show that out of these 33,183 false-positive packet losses,

most (90.72% or 30,104) are because IoTSTEED misclassifies 12 IoT

servers as malicious (Table 3). We show that the rest false-positive

packet losses (7.83%, 2,597 out of 33,183) are because IoTSTEED

initially mis-classifies six non-IoT devices as IoT and filters these

non-IoT devices’ traffic as if they are IoT traffic. After IoTSTEED

later corrects mis-classification of these six non-IoT devices, it

no longer filters their traffic (recalling IoTSTEED ignores non-IoT

traffic). In §4, we show that we could avoid these packet losses

due to initial mis-classification by listing all non-IoT devices’ MAC

addresses as exceptions (whose packets IoTSTEED will ignore)

when starting IoTSTEED.

3.2 True Positives and False Negatives with
Attack Traffic

To understand IoTSTEED’s TPs and FNs in filtering attack traffic, we

spoof traffic capture of real-world DDoS attacks and run IoTSTEED

with replay of these spoofed DDoS traffic.

Access Simulated Traffic Start After Filtering
Victims Type Attackers Type Bootstrap? Decision
B root IP Amcrest_Cam TCP Yes Drop

B root IP Amcrest_Cam DNS Yes Drop

B root IP Amcrest_Cam TCP No Pass
B root IP Foscam_Cam TCP Yes Pass
B root IP a non-IoT dev TCP Yes Pass
Krebs Name Amcrest_Cam TCP Yes Drop

Krebs Name Philips_Bulb TCP Yes Drop

Philips Name Philips_Bulb TCP Yes Pass
Krebs Name HP_Printer TCP Yes Drop

Krebs Name Dyson_Purifier TCP Yes Drop

Table 4: Simulated Attacks in Trace-replay Validation

Replay of Spoofed Real-world DDoS Traffic: We test IoT-

STEED with attack traffic from two real-world DDoS events cap-

tured at B-root DNS server (simply “B root” hereafter): a DNS query

flooding event in December 2015 and a TCP SYN flooding event in

June 2016. We first simulate ten IoT-based DDoS attacks (each a row

in Table 4) by spoofing attack traffic capture from these two DDoS

events so that the attacks appear coming from our IoT devices.

(Among these ten simulated attacks, four are examples of the four

potential countermeasures to IoTSTEED discussed in §2.5.) We then

test IoTSTEED with replay of each of these simulated IoT-based

DDoS attacks together with 10-day benign traffic capture from §3.1.

We first simulate five IoT-based DDoS attacks to an IP-accessed

server: B root. We simulate attacks to B root because IoT-based

DDoS attacks have frequently targeted DNS servers [17]. We do not

simulate attacks to other IP-accessed servers because IoTSTEED

only examines when an IP-accessed server gets accessed (§2.2.3)

and by whom (§2.2.4) rather than its exact server IP. To simulate a

certain IoT deviceD attacking B root at time t via TCP SYN flooding

(simulating DNS-query flooding from D is similar), we first extract

one random attacker’s DDoS packets from 15-minute sample of

TCP SYN flooding event (referred as TCP “attacker capture”). We

then replace the source MAC and IP addresses in TCP attacker

capture with MAC and LAN IP of D and shifting timestamp of

all DDoS packets in TCP attacker capture to right after t (called
“spoofed attacker capture”). Since the two DDoS events we use are

captured at victim (B root) and do not include potential DNS queries

from attackers about victim, our spoofed attacker capture simulates

device D attacking B root directly by IP. We summarize the five

IoT-based DDoS attacks to B root we simulate in top half of Table 4.

Four of them are based on spoofing TCP attacker capture with

four combinations of attackers and attacking time: Amcrest_Cam,

Foscam_Cam and an non-IoT device attacking after server boot-

strapping and Amcrest_Cam attacking during bootstrapping. (We

test IoTSTEED with an non-IoT attack to simulate defending IoT

devices disguised as non-IoT, one countermeasure to IoTSTEED

from §2.5.) The remaining one simulated attack is based on spoofing

DNS attacker capture with one attacking device (Amcrest_Cam)

and time (after bootstrapping).

We next simulate five attacks to two name-accessed servers:

www.krebsonsecurity.com andwww.philips.com (shortened as “Krebs”

and “Philips” hereafter.) We simulate attacks to Philips, a manufac-

turer server for Philips_Bulb, to test IoTSTEED’s defense of attacks

7

www.krebsonsecurity.com
www.philips.com

to common IoT servers (recalling §2.2.4). We simulate attacks to

Krebs, victim of an IoT-based DDoS attack in 2016 [44], to test IoT-

STEED’s defense of attacks to all other name-accessed servers. To

simulate a given IoT deviceD attacking Krebs at time t via TCP SYN
flooding (simulating attacks to Philips is similar), We first generate

a spoofed TCP attacker capture for D (which simulate D TCP SYN

flooding B root at time t) as we discussed above. We then replace

victim IP in spoofed TCP attacker capture (B-root IP) with Krebs’

IP. Lastly, we inject forged DNS traffic (containing type-A DNS

query from D about Krebs and corresponding DNS replies) to the

beginning of this spoofed TCP attacker capture. We summarize the

five IoT-based DDoS attacks to Krebs and Philips we simulate in

the bottom half of Table 4. Our five simulated attacks are based on

spoofing TCP attacker capture with five different combinations of

attackers and victims: Amcrest_Cam, Philips_Bulb, HP_Printer and

Dyson_Purifier attacking Krebs and Philips_Bulb attacking Philips.

True Positives with attack traffic: We show IoTSTEED de-

fends all attacks except the four based on countermeasures from §2.5

(see the six attacks with “Drop” filtering decision in Table 4). We

show IoTSTEED defends these six attacks regardless of their at-

tacking devices (four different devices Table 4), traffic types (TCP

SYN flooding and DNS query flooding), victims (B root and Krebs)

and accessing types for victims (IP-accessed and name-accessed).

In router deployment §4, we extend this observation by showing

that IoTSTEED defends attacks regardless of their packet rates.

False Negatives with Attack Traffic:We confirm IoTSTEED

indeed cannot mitigates the four types of attacks discussed in §2.5,

contributing to the four FNs we observe in Table 4 (see the four

“passed” attacks). We also confirm our conclusion from §2.5 that

these countermeasures either are difficult, have limited applicability,

or weaken attacks.

First, we show that IoTSTEED cannot defend attacks launched

during server bootstrapping period of the attacking devices, which

contribute to the passing of attacks from Amcrest_Cam to B root

during bootstrapping (third B-root attack in Table 4). However this

type of attacks are not likely to happen in practice since bootstrap-

ping period is relatively short (see §2.5 for details.)

Second, we show IoTSTEED cannot defend devices from attack-

ing the three class of common IoT servers it considers benign

in §2.2.4, which causes the missing of attacks from Philips_Bulb

to Philips (see the attack to Philips in Table 4). While IoTSTEED

cannot defend attacks to a few common IoT servers, IoTSTEED still

defend the rest majority of servers and break economy of running

commercial DDoS attacks (as shown in §2.5).

Third, we show that IoTSTEED cannot defend devices with-

out IP-accessing filtering from attacking IP-accessed server, which

contribute to the passing of attacks from Foscam_Cam whose IP-

accessing filtering is off (forth B-root attack in Table 4). We argue

that these devices are in minority (3 of 14 IoT devices in §3) and

that some of them (including Foscam_Cam, as shown later in §4)

would become defendable once disabling UPnP service in router

(recalling §2.5).

Lastly, we show IoTSTEED cannot defend attacks from IoT de-

vices disguised as non-IoT devices, which contributes to the passing

of attacks from an non-IoT device to B root (last B-root attack in

Table 4). While disguising IoT devices does evade IoTSTEED’s de-

fense, it weaken the resulting IoT-based DDoS attack by making the

Access Simulated Traffic Start After Filtering
Victims Type Attackers Type Bootstrap? Decision
Univ Svrs IP Amcrest_Cam Slow TCP No Pass
Univ Svrs IP Foscam_Cam Slow TCP Yes Drop

Univ Svrs IP Philips_Bulb Slow TCP Yes Drop

Univ Svrs IP TPLink_Plug Fast TCP Yes Drop

Table 5: Simulated Attacks in Router-deployment Valida-
tion

attack harder to implement and making the bots easier to identify,

as detailed in §2.5.

In summary, our experiment results suggest IoTSTEED could mit-

igate all except the four types of attacks discussed in §2.5 regardless

of the attacks’ traffic types, attacking devices and victims.

4 VALIDATION BY ROUTER DEPLOYMENT
Having tested IoTSTEED with replay of off-line traffic capture (§3),

we next deploy it on-line in the NAT router of an IoT access network

for 10 days.We show IoTSTEEDworks in router deployment similar

to trace-replay validation: with reasonable run-time overhead, few

false positives (FPs) with benign traffic and similar true positives

(TPs) and false negatives (FNs) with attack traffic.

Experiment Setup:We deploy IoTSTEED in the NAT router of

the experimental IoT access network from §3. (The NAT router is a

LinksysWRT1900ACS router runningOpenWRT version 19.07.1 [59].)

We add one extra Linux personal computer (PC) to this network

to simulate IoT-based DDoS attacks. Similar to trace-replay valida-

tion (§3), our deployment experiment lasts 10 days. We shut off all

IoT devices initially and boot them up after IoTSTEED starts. We

interact with IoT devices daily with the same mobile phone as in

§3.

We simulate four IoT-based DDoS attacks during 10-day deploy-

ment, as summarized in Table 5. We run hping3 [34] from one

Linux laptop in this IoT access network (with one “fast” TCP SYN

flooding attack of 1000 packets/s and three “slow” TCP SYN at-

tacks of 10 packets/s) and spoof this laptop’s MAC and IP addresses

with those of certain IoT devices (the attackers in Table 5). We

block all inbound and outbound traffic to this laptop except traf-

fic to DDoS victim to prevent laptop from talking to non-victim

PC-oriented servers using spoofed IoT MAC addresses and confus-

ing IoTSTEED into thinking that some IoT devices are talking to

these PC-oriented servers. (We cannot simulate attacks to name-

accessed servers because if we allow DNS traffic from this Linux

laptop, it could DNS query non-victim PC-oriented servers, such

as connectivity-check.ubuntu.com, with spoofed IoT MAC address

and confuse IoTSTEED.)

Lastly, we apply two tweaks to our router-deployment experi-

ment to validate our claims earlier in trace-replay validation that

they could reduce FPs (§3.1) and FNs (§3.2) in filtering traffic. First,

we list all non-IoT devices’ MAC addresses as exceptions (whose

packets IoTSTEED would ignore) when starting IoTSTEED. Our

goal is to validate the claim that doing so could reduce FPs in traffic

filtering (caused by initial mis-classification of some non-IoT de-

vices as IoT, recalling §3.1). Second, we disable UPnP service in NAT

router during our 10-day deployment. Disabling UPnP allows us

8

connectivity-check.ubuntu.com

 40
 45
 50
 55

 0 24 48 72 96 120 144 168 192 216 240

C
P
U

%

 2

 4

 6

 0 24 48 72 96 120 144 168 192 216 240M
e
m

%

Hours Since Deployment

Figure 5: IoTSTEED’s Per-hour CPU andMemory Usage dur-
ing Router-deployment Validation

to validate our claim that without UPnP, devices like Foscam_Cam

will stop constantly visiting new IP-accessed servers and causing

potential FNs in filtering DDoS attacks (§3.2).

Measuring Run-time Overhead: We measure memory and

CPU usage of IoTSTEED every hour during this 10-day deployment.

We show IoTSTEED uses a small amount (in average 4%) of the

512MB memory and about half (in average 49%) of the 1.6 GHz

dual-core CPU in this NAT router and its memory and CPU usages

are quite stable, as illustrated in Figure 5.

We confirm that IoTSTEED’s CPU usage does not slow down

router’s packet forwarding and thus even though half the CPU is

busy, the router’s user-visible performance is unaffected. We run

Internet speed test (www.speedtest.net) from one laptop in this

access network and confirm that this laptop’s peak download and

upload speeds with IoTSTEED running (113Mb/s and 11Mb/s, aver-

aged over 10 tests) is roughly identical to those without IoTSTEED

running (114Mb/s and 11Mb/s, averaged over 10 tests). (As CPUs

in home routers keep growing faster, we expect IoTSTEED’s CPU

usage to decrease over time.)

False Positives with Benign Traffic:We confirm IoTSTEED’s

accuracy in detecting devices and FPs in learning servers and filter-

ing traffic during router deployment are similar to what we report

in trace-replay validation (§3.1). IoTSTEED correctly detects all

14 IoT devices and infers their manufacturers (100% accuracy). It

maintains low false-positive rate in learning servers: flagging a

small amount (6 or 4%) of 139 IoT servers as suspicious. (Six FPs

include five IP-accessed servers entering second-round learning

and one name-accessed servers with domain “Google” that does

not resemble common IoT servers.) It also shows low false-positive

rate in filtering traffic: dropping a tiny fraction (8,769 or 0.07%) of

12 million benign IoT packets observed from this LAN.

We show all FPs in filtering traffic are because IoTSTEED flags

six IoT servers as suspicious during server learning. Comparing to

§3.1, we see no false-positive filtering caused by initial misclassifi-

cation of non-IoT devices as IoT because we exclude non-IoT MAC

addresses. We conclude that excluding non-IoT MAC addresses

when starting IoTSTEED could reduce FPs in filtering traffic.

True Positives and False Negatives with Attack Traffic:We

next examine IoTSTEED’s TPs and FNs in filtering attack traffic

during router deployment and show they are similar to what we ob-

serve in trace-replay validation. We confirm that IoTSTEED cannot

defend attack during bootstrapping, which causes the one FN in Ta-

ble 5. We confirm IoTSTEED mitigates all other three attacks tested

regardless of the attacking devices (three different devices Table 5)

and packet rates (1000 packets/s and 10 packets/s) of attacks.

We note that IoTSTEED successfully mitigates the attack from

Foscam_Cam during router deployment while passes a similar at-

tack from Foscam_Cam during trace-replay validation (§3.2) . We

believe the reason for this difference is that we turn off UPnP ser-

vice in deployment. In trace-replay validation, Foscam_Cam keeps

responding to unsolicited probes from Internet scanners (a side ef-

fect of UPnP) and appears to be constantly visiting new IP-accessed

servers, forcing IoTSTEED to turn off its IP-accessing filtering. In

deployment, these Internet scanners cannot reach Foscam_Cam

because without UPnP service, Foscam_Cam cannot set up static

port mapping in router. As a result, IoTSTEED keeps IP-accessing

filtering for Foscam_Cam on and mitigate its attack. We conclude

that for some devices (such as Foscam_Cam, Samsung_Cam and

D-Link_Cam in router deployment), we can prevent them from con-

stantly contacting new IP-accessed servers and failing IoTSTEED’s

defense by disabling UPnP service in router.

Lastly, we show that even without UPnP service, a few devices

could still keep visiting new IP-accessed servers and IoTSTEED

cannot defend them from attacking IP-accessed servers. During

router deployment, we find Belkin_Plug and Tenvis_Cam both talk

to a few new IP-accessed servers after bootstrapping and cause

IoTSTEED to turn off their IP-accessing filtering. For Belkin_Plug,

we find most (12 or 80%) of its 15 IP-accessed servers to be STUN

servers for NAT traversal, similar to what we observe in prior mea-

surements (§2.2.3 and in §3). However we are not certain about why

Belkin_Plug keeps talking to new STUN servers throughout router

deployment but stops visiting new STUN servers in the middle of

measurement in §3. We are also unclear about why Tenvis_Cam

talks to a few new IP-accessed servers (3, not counting whitelisted

server IPs in §2.2.1) after bootstrapping in router deployment but

not in our prior measurements (§2.2.3 and §3).

5 RELATEDWORK
Prior groups have studied detecting IoT devices and defending both

IoT-based and traditional DDoS attacks (launched from PCs and

servers).

5.1 IoT Device Detection
Several prior projects detect IoT devices with public IPs by active

scanning [9, 16, 53, 69, 74]. In comparison, our detection uses pas-

sivemeasurement and thus could detect devices behind NATs (when

running fromNAT box). Other prior work alsomeasures IoT devices

passively and thus covers devices behind NAT [3, 29, 30, 33, 71].

However they either rely on pre-training with traffic from target de-

vices [29, 30, 71] (our prior studies on general IoT detection [29, 30]

fall into this category), or only cover IoT devices infected by certain

malware [3, 33]. In comparison, our detection is based on MAC

addresses and requires no such pre-training with target devices’

traffic. Our detection also applies to general IoT devices instead of

just the compromised ones.

5.2 IoT-Based DDoS Defense
Traffic Endpoint as Signals: Similar to our work, prior work also

explore the idea of detecting IoT-based DDoS traffic based on traffic

endpoints. They either operate near the IoT devices or near the

remote endpoints IoT devices talk to.

9

www.speedtest.net

Several groups propose detecting IoT-based DDoS traffic based

on traffic endpoints from the edge routers of IoT access networks [14,

32, 61]. The preliminary measurement study from Brown Univer-

sity shows it is feasible to detect DDoS traffic from IoT devices

by whitelisting the benign endpoints they talk to, without pro-

viding a method to build this whitelist [14]. Along the same line,

work from University of New South Wales proposes building this

whitelist of benign endpoints based on manufacturer usage descrip-

tion (MUD, an IETF draft [45]) profiles provided by MUD-compliant

IoT devices [32]. Different from both work, we provide concrete

mechanisms to build whitelists of benign endpoints that IoT de-

vices talk to (recalling IoT servers in §2.2), without relying on the

currently non-existent MUD-compliant IoT devices. Bogazici Uni-

versity detects compromised IoT devices by identifying devices

that send TCP SYN packets to many different endpoints in a short

interval without receiving as much positive responses [61]. Unlike

their focus on TCP SYN flooding traffic, we detect all types of DDoS

traffic not sent to benign endpoints.

One group detects malicious IoT traffic by measuring from the

remote endpoints IoT devices talk to [74]. Work from Concordia

University ([74]) infers compromised IoT devices in the public In-

ternet by identifying the fraction of IoT devices detected by Shodan

([69]) that send packets to allocated but un-used IPs monitored by

CAIDA (as known as darknet [6]). In comparison, our work have

very different coverage: we cover compromised IoT devices in the

access network we monitor (potentially with private IP addresses)

while they cover a subset of compromised IoT devices on public

Internet. By whitelisting benign endpoints, we cover malicious IoT

traffic to all suspicious endpoints, unlike their focus on malicious

IoT traffic to a specific group of suspicious endpoints: the CAIDA

darknet IPs.

Traffic Flow Statistics as Signals: Several prior work detect

IoT-based DDoS traffic based on traffic flow statistics (such as packet

rates and packet sizes) from the edge router of an IoT access network

(such as the NAT router of a LAN) [15, 51, 58]. They detect IoT-based

DDoS traffic using machine learning (ML) models trained with

either a mixture of benign IoT traffic and simulated attack traffic

(binary classification that detects DDoS by looking for similarity to

known attack traffic [15]) or with only benign IoT traffic (anomaly

detection that detects DDoS by looking for deviations from known

benign traffic [51, 58]). Unlike their signals based on traffic flow

statistics, we use traffic endpoints’ first-visit time and identities as

signal. Comparing to their detection techniques of ML-based binary

classification [15] and anomaly detection [51, 58], we use a different

technique: heuristic-based rules. While they all assume an IoT-only

access network, IoTSTEED could separate IoT from non-IoT devices

and could operate in realistic access networks with both IoT and

non-IoT devices. IoTSTEED also covers DDoS traffic of different

types (such as TCP SYN flooding and DNS query flooding) and flow

statistics (such as packet rates) by dropping all traffic not sent to

benign endpoints. In comparison, ML-based binary classification

only detects attacks similar to known attack traffic seen in model

training [15]. Although in principle, ML-based anomaly detection

could identify malicious traffic of different types and flow statistics

by looking for deviations from known benign traffic [51, 58], prior

work have shown that ML models are not good at detecting such

deviations especially when dealing with highly-variable real-world

network traffic [26, 72]. Lastly, their methods are computationally

heavy and are not likely to run from resource-constraint home

router. In comparison, IoTSTEED is light-weight and could run in

commodity home router with reasonable overhead (§4).

Other Signals: Other prior work detect compromised IoT de-

vices and defend malicious IoT-based DDoS traffic with other sig-

nals [13, 38]. Work from IFFAR detects compromised IoT sensors

reporting altered measurements by finding outliers in measure-

ments reported by a pool of homogeneous IoT sensors [13]. In

comparison, IoTSTEED applies to all types of IoT access network

instead of just networks of homogeneous IoT sensors. Work from

National University of Singapore [38] mitigates IoT-based DDoS

attacks to a given server by setting static traffic quotas in this server

for each contacting IoT device and dropping excessive packets. In

comparison, IoTSTEED do not require access to victim servers.

The industry is also working on detecting malicious IoT traffic.

Telekom Security of T-Systems detects compromised IoT devices by

monitoring darknet, their worldwide honeypot networks and their

CPEs [23]. Upon detection, they filter attack traffic at ISP boarder

and CPEs and inform customers about their compromised IoT de-

vices. In comparison, IoTSTEED is local to LAN and do not requires

monitoring darknet and accessing global honeypot networks.

5.3 Traditional DDoS Defense
Prior to IoT-based DDoS attacks, DDoS attacks launched from tra-

ditional network devices such as PC and servers has been studied

widely.

Defense at Bot Side: similar to our work, prior work propose

defending traditional DDoS traffic at bot side [18, 24, 54]. D-WARD

detects DDoS attacks at bot side by comparing traffic flow statistics

from and to the access network of bots with pre-defined models for

normal flow statistics [54]. FireCol puts multiple intrusion preven-

tion systems (IPS) close to the access network of bots and detects

DDoS based on traffic bandwidths measured from these IPSes [18].

MULTOPS detects DDoS attacks overloading network bandwidth

of victims by identifying disproportional difference between packet

rate coming from and going back to the bots’ access network [24].

Different from their focus on traffic flow statistics such as packet

rates and ratio of number of packets sent and received, our work

focuses on traffic endpoints such as their first-visit time and DNS

names.

Defense at Intermediate Network: Prior work also studies

defending DDoS attack at the intermediate network between bots

and victims. Work from AT&T Labs detects DDoS traffic from in-

termediate network by identifying aggregates of network flows

that cause network link congestion. Their detection relies on traffic

flow statistics such as packet arrival rates and packet dropping

history [50]. In comparison, IoTSTEED detects DDoS traffic with

traffic endpoints as signals and operates at bot side.

Defense at Victim Side: Other prior work studies defending

DDoS traffic at victim network.

Prior work defends network and transport-layer DDoS attacks

that consumes bandwidth and other resources of victims (such

as ICMP flooding and TCP SYN flooding) with techniques such

as statistical anomaly detection (which detects DDoS by identify-

ing anomaly in certain traffic flow statistics) [75], flow imbalance

10

heuristic (which looks for unbalanced packet rates between the

incoming and outgoing traffic flows) [1] and TCP SYN cookies [4].

Prior work defends application-layer DDoS attacks targetingweb

applications (such as HTTP GET flooding) with techniques such

as Turing test (which distinguishes legitimate human users from

machines) [41, 63], moving-target techniques (which moves target

web application around a pool of servers to increase uncertainty

for the attacker) [39, 43, 78], domain-helps-domain collaboration

(which allows a domain to direct excessive traffic to other trusted ex-

ternal domains for DDoS filtering) [65] and also statistical anomaly

detection [57, 64].

Prior work also defends DDoS attacks targeting software-defined

network (SDN) by deploying new packet scheduling algorithms

in SDN controllers [35, 46], running traffic-statistic-based DDoS

detection algorithms in SDN [40, 62, 76] and improving SDN archi-

tecture [8, 80].

Different from these prior work that focus on defending DDoS

attacks at victim side, IoTSTEED defends DDoS traffic at bot side.

6 CONCLUSION
We propose IoTSTEED, a system that defends IoT-based DDoS at-

tacks at bot-side. IoTSTEED detects IoT devices in its deployed

network, learns their benign servers and filters their traffic to other

servers as potential DDoS attacks. We validate IoTSTEED with

replay of 10-day benign traffic captured from an IoT access net-

work and simulated IoT-based DDoS attacks. We show IoTSTEED

could correctly detect the 14 LAN IoT and 6 non-IoT devices in this

access network (100% accuracy). We show IoTSTEED maintains

low false-positive rate in learning servers (2%) and filtering traf-

fic (0.45%). Experiment results also show IoTSTEED mitigates all

typical attacks, regardless of the attacks’ traffic types, attacking

devices and victims; an intelligent adversary can design to avoid

detection in a few cases, but at the cost of a weaker attack. Lastly,

we deploy IoTSTEED in NAT router of an IoT access network for 10

days, showing reasonable resource usage (4% of 512MB memory)

and verifying our testbed experiments for accuracy and learning in

practice.

ACKNOWLEDGMENTS
Hang Guo and John Heidemann’s work is based on research spon-

sored by Air Force Research Laboratory under agreement number

FA8750-17-2-0280. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon.

REFERENCES
[1] Abdelsayed, S., Glimsholt, D., Leckie, C., Ryan, S., and Shami, S. An efficient

filter for denial-of-service bandwidth attacks. In IEEE Global Telecommunications
Conference (Dec 2003), vol. 3, pp. 1353–1357 vol.3.

[2] Alrawi, O., Lever, C., Antonakakis, M., and Monrose, F. SoK: Security

evaluation of home-based IoT deployments. In 2019 IEEE Symposium on Security
and Privacy (SP) (May 2019), pp. 1362–1380.

[3] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran,

J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M., Kumar, D.,

Lever, C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas,

K., and Zhou, Y. Understanding the Mirai botnet. In 26th USENIX Security
Symposium (USENIX Security 17) (Vancouver, BC, 2017), USENIX Association,

pp. 1093–1110.

[4] Bernstein, D. J. TCP SYN cookies. http://cr.yp.to/syncookies.html.

[5] Bray, H. Akamai breaks ties with security expert. https://www.bostonglobe.

com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/

story.html.

[6] CAIDA. The UCSD network telescope. https://www.caida.org/projects/network_

telescope/.

[7] Carman, A. Smart ovens have been turning on overnight and preheating to

400 degrees. https://www.theverge.com/2019/8/14/20802774/june-smart-oven-

remote-preheat-update-user-error.

[8] Chourishi, D., Miri, A., Milić, M., and Ismaeel, S. Role-based multiple con-

trollers for load balancing and security in SDN. In IEEE Canada International
Humanitarian Technology Conference (IHTC) (May 2015), pp. 1–4.

[9] Chung, T., Liu, Y., Choffnes, D., Levin, D., Maggs, B. M., Mislove, A., and

Wilson, C. Measuring and applying invalid SSL certificates: The silent majority.

In Proceedings of the 2016 Internet Measurement Conference (New York, NY, USA,

2016), IMC ’16, ACM, pp. 527–541.

[10] Constantin, L. Hackers found 47 new vulnerabilities in 23 IoT devices at DEF

CON. https://www.csoonline.com/article/3119765/security/hackers-found-47-

new-vulnerabilities-in-23-iot-devices-at-def-con.html.

[11] Costin, A., Zarras, A., and Francillon, A. Automated dynamic firmware

analysis at scale: A case study on embedded web interfaces. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security (New

York, NY, USA, 2016), ASIA CCS ’16, ACM, pp. 437–448.

[12] Day, M., Turner, G., and Drozdiak, N. Amazon workers are listening to what

you tell alexa. https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-

listening-to-you-on-alexa-a-global-team-reviews-audio.

[13] de Souza, P. S. S., dos Santos Marqes, W., Rossi, F. D., da Cunha Rodrigues,

G., and Calheiros, R. N. Performance and accuracy trade-off analysis of tech-

niques for anomaly detection in IoT sensors. In 2017 International Conference on
Information Networking (ICOIN) (Jan 2017), pp. 486–491.

[14] DeMarinis, N., and Fonseca, R. Toward usable network traffic policies for IoT

devices in consumer networks. In Proceedings of the 2017 Workshop on Internet of
Things Security and Privacy (New York, NY, USA, 2017), IoTS&P ’17, ACM,

pp. 43–48.

[15] Doshi, R., Apthorpe, N., and Feamster, N. Machine learning DDoS detection

for consumer Internet of Things devices. CoRR abs/1804.04159 (2018).
[16] Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., and Halderman, J. A. A

search engine backed by Internet-wide scanning. In Proceedings of the ACM
Conference on Computer and Communications Security (Denver, CO, USA, Oct.

2015), ACM, pp. 542–553.

[17] Dyn. Dyn analysis summary of Friday October 21 attack. http://dyn.com/blog/

dyn-analysis-summary-of-friday-october-21-attack/.

[18] Francois, J., Aib, I., and Boutaba, R. FireCol: A collaborative protection network

for the detection of flooding DDoS attacks. IEEE/ACM Transactions on Networking
20, 6 (Dec 2012), 1828–1841.

[19] Gartner. Gartner says 5.8 billion enterprise and automotive IoT endpoints will

be in use in 2020. https://www.gartner.com/en/newsroom/press-releases/2019-

08-29-gartner-says-5-8-billion-enterprise-and-automotive-io.

[20] Geenens, P. Assessing the threat the Reaper botnet poses to the In-

ternet—what we know now. https://arstechnica.com/information-

technology/2017/10/assessing-the-threat-the-reaper-botnet-poses-to-the-

internet-what-we-know-now/.

[21] Geenens, P. Hajime: Analysis of a decentralized Internet worm for IoT devices.

https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf.

[22] Geenens, P. Hajime – sophisticated, flexible, thoughtfully designed and future-

proof. https://blog.radware.com/security/2017/04/hajime-futureproof-botnet/.

[23] Giese, C. Detect & respond to IoT botnets as an ISP. https://www.first.org/

resources/papers/conf2018/Giese-Christoph_FIRST_20180620.pdf.

[24] Gil, T. M., and Poletto, M. MULTOPS: A data-structure for bandwidth attack

detection. In Proceedings of the 10th Conference on USENIX Security Symposium
(Berkeley, CA, USA, 2001), SSYM, USENIX Association.

[25] GREENBERG, A. Hackers found a not-so-easy way to make the Amazon Echo a

spy bug. https://www.wired.com/story/hackers-turn-amazon-echo-into-spy-

bug/.

[26] Guo, H., Fan, X., Cao, A., Outhred, G., and Heidemann, J. Peek inside the

closed world: Evaluating autoencoder-based detection of DDoS to cloud, 2019.

[27] Guo, H., and Heidemann, J. IoT_Operation_Traces-20200127. https://ant.isi.

edu/datasets/iot/.

[28] Guo, H., and Heidemann, J. IoTSTEED source code. https://ant.isi.edu/software/

iotsteed/index.html.

[29] Guo, H., and Heidemann, J. Detecting IoT devices in the Internet (extended).

Tech. Rep. ISI-TR-726, USC/Information Sciences Institute, July 2018.

[30] Guo, H., and Heidemann, J. IP-based IoT device detection. In Proceedings of the
2nd Workshop on IoT Security and Privacy (aug 2018).

[31] Hamza, A., Gharakheili, H. H., Benson, T. A., and Sivaraman, V. Detecting

volumetric attacks on IoT devices via SDN-based monitoring of MUD activity. In

Proceedings of the 2019 ACM Symposium on SDN Research (New York, NY, USA,

2019), SOSR ’19, Association for Computing Machinery, p. 36–48.

[32] Hamza, A., Gharakheili, H. H., and Sivaraman, V. Combining MUD policies

11

http://cr.yp.to/syncookies.html
https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
https://www.theverge.com/2019/8/14/20802774/june-smart-oven-remote-preheat-update-user-error
https://www.theverge.com/2019/8/14/20802774/june-smart-oven-remote-preheat-update-user-error
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://arstechnica.com/information-technology/2017/10/assessing-the-threat-the-reaper-botnet-poses-to-the-internet-what-we-know-now/
https://arstechnica.com/information-technology/2017/10/assessing-the-threat-the-reaper-botnet-poses-to-the-internet-what-we-know-now/
https://arstechnica.com/information-technology/2017/10/assessing-the-threat-the-reaper-botnet-poses-to-the-internet-what-we-know-now/
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://blog.radware.com/security/2017/04/hajime-futureproof-botnet/
https://www.first.org/resources/papers/conf2018/Giese-Christoph_FIRST_20180620.pdf
https://www.first.org/resources/papers/conf2018/Giese-Christoph_FIRST_20180620.pdf
https://www.wired.com/story/hackers-turn-amazon-echo-into-spy-bug/
https://www.wired.com/story/hackers-turn-amazon-echo-into-spy-bug/
https://ant.isi.edu/datasets/iot/
https://ant.isi.edu/datasets/iot/
https://ant.isi.edu/software/iotsteed/index.html
https://ant.isi.edu/software/iotsteed/index.html

with SDN for IoT intrusion detection. In Proceedings of the 2018 Workshop on IoT
Security and Privacy (New York, NY, USA, 2018), IoT S&P ’18, ACM, pp. 1–7.

[33] Herwig, S., Harvey, K., Hughey, G., Roberts, R., and Levin, D. Measurement

and analysis of Hajime, a peer-to-peer IoT botnet. In Network and Distributed
System Security Symposium (NDSS) (Feb 2019).

[34] hping. Hping project. http://www.hping.org/hping3.html.

[35] Hsu, S., Chen, T., Chang, Y., Chen, S., Chao, H., Lin, T., and Shih, W. Design

a hash-based control mechanism in vSwitch for software-defined networking

environment. In IEEE International Conference on Cluster Computing (Sep. 2015),

pp. 498–499.

[36] Huang, D. Y., Apthorpe, N., Acar, G., Li, F., and Feamster, N. IoT inspector:

Crowdsourcing labeled network traffic from smart home devices at scale, 2019.

[37] IPVM. Dahua OEM directory. https://ipvm.com/reports/dahua-oem.

[38] Javaid, U., Siang, A. K., Aman, M. N., and Sikdar, B. Mitigating IoT device

based DDoS attacks using blockchain. In Proceedings of the 1st Workshop on
Cryptocurrencies and Blockchains for Distributed Systems (New York, NY, USA,

2018), CryBlock’18, ACM, pp. 71–76.

[39] Jia, Q., Sun, K., and Stavrou, A. MOTAG: Moving target defense against

Internet denial of service attacks. In 22nd International Conference on Computer
Communication and Networks (ICCCN) (July 2013), pp. 1–9.

[40] Kalkan, K., Gür, G., and Alagöz, F. SDNScore: a statistical defense mechanism

against DDoS attacks in SDN environment. In IEEE Symposium on Computers
and Communications (ISCC) (July 2017), pp. 669–675.

[41] Kandula, S., Katabi, D., Jacob, M., and Berger, A. Botz-4-sale: Surviving

organized DDoS attacks that mimic flash crowds. In Proceedings of the 2Nd Con-
ference on Symposium on Networked Systems Design & Implementation - Volume 2
(Berkeley, CA, USA, 2005), NSDI’05, USENIX Association, pp. 287–300.

[42] Kelly, R. L. IoT Cybersecurity Improvement Act of 2019. https://www.congress.

gov/bill/116th-congress/house-bill/1668/text.

[43] Khattab, S. M., Sangpachatanaruk, C., Melhem, R., l Mosse, D., and Znati, T.

Proactive server roaming for mitigating denial-of-service attacks. In International
Conference on Information Technology: Research and Education. ITRE (Aug 2003),

pp. 286–290.

[44] Krebs, B. KrebsOnSecurity hit with record DDoS. https://krebsonsecurity.com/

2016/09/krebsonsecurity-hit-with-record-ddos/.

[45] Lear, E., Droms, R., and Romascanu, D. Manufacturer usage description speci-

fication. https://tools.ietf.org/html/rfc8520.

[46] Lim, S., Yang, S., Kim, Y., Yang, S., and Kim, H. Controller scheduling for con-

tinued SDN operation under DDoS attacks. Electronics Letters 51, 16 (2015),

1259–1261.

[47] Loshin, P. Details emerging on Dyn DNS DDoS attack, Mirai IoT botnet.

blog http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-

Dyn-DNS-DDoS-attack-Mirai-IoT-botnet, Oct. 2016.

[48] Ltd, A. New research shows that consumers are willing to pay for IoT ser-

vices. https://www.allot.com/blog/new-research-shows-that-consumers-are-

willing-to-pay-for-iot-services/.

[49] macaddress.io. MAC address vendor lookup library. https://macaddress.io/.

[50] Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J., Paxson, V., and Shenker,

S. Controlling high bandwidth aggregates in the network. SIGCOMM Comput.
Commun. Rev. 32, 3 (July 2002), 62–73.

[51] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breiten-

bacher, D., and Elovici, Y. N-BaIoT—network-based detection of IoT botnet

attacks using deep autoencoders. IEEE Pervasive Computing 17, 3 (Jul 2018),

12–22.

[52] Micro, T. Hide N Seek botnet uses Peer-to-Peer infrastructure to compromise

IoT devices. https://www.trendmicro.com/vinfo/us/security/news/internet-of-

things/-hide-n-seek-botnet-uses-peer-to-peer-infrastructure-to-compromise-

iot-devices.

[53] Mirian, A., Ma, Z., Adrian, D., Tischer, M., Chuenchujit, T., Yardley, T.,

Berthier, R., Mason, J., Durumeric, Z., Halderman, J. A., and Bailey, M. An

Internet-wide view of ICS devices. In Annual Conference on Privacy, Security and
Trust (PST) (Dec 2016).

[54] Mirkovic, J., Prier, G., and Reiher, P. Attacking DDoS at the source. In 10th
IEEE International Conference on Network Protocols (Nov 2002), pp. 312–321.

[55] Motherboard. 15 million hijacked cameras make an unprecedented bot-

net. https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-

cameras-ddos-botnet-brian-krebs.

[56] Mozilla. Public suffix list from Mozilla foundation. https://www.publicsuffix.

org/.

[57] Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., and Kemp, C. User

behavior anomaly detection for application layer DDoS attacks. In IEEE In-
ternational Conference on Information Reuse and Integration (IRI) (Aug 2017),

pp. 154–161.

[58] Nguyen, T. D., Marchal, S., Miettinen, M., Dang, M. H., Asokan, N., and

Sadeghi, A. Dïot: A crowdsourced self-learning approach for detecting compro-

mised IoT devices. CoRR abs/1804.07474 (2018).
[59] Openwrt. Openwrt project. https://openwrt.org/.

[60] OVH. OVH news - the DDoS that didn’t break the camel’s VAC. https://www.

ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac.

[61] Ozçelik, M., Chalabianloo, N., and Gur, G. Software-defined edge defense

against IoT-based DDoS. In 2017 IEEE International Conference on Computer and
Information Technology (CIT) (Aug 2017), pp. 308–313.

[62] Piedrahita, A. F. M., Rueda, S., Mattos, D. M. F., and Duarte, O. C. M. B.

Flowfence: a denial of service defense system for software defined networking.

In Global Information Infrastructure and Networking Symposium (GIIS) (Oct 2015),
pp. 1–6.

[63] Rangasamy, J., Stebila, D., Boyd, C., and Nieto, J. G. An integrated approach

to cryptographic mitigation of denial-of-service attacks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security (New

York, NY, USA, 2011), ASIACCS ’11, ACM, pp. 114–123.

[64] Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A., and Knightly, E. DDoS-

Shield: DDoS-resilient scheduling to counter application layer attacks. IEEE/ACM
Transactions on Networking 17, 1 (Feb 2009), 26–39.

[65] Rashidi, B., Fung, C., and Bertino, E. A collaborative DDoS defence framework

using network function virtualization. IEEE Transactions on Information Forensics
and Security 12, 10 (Oct 2017), 2483–2497.

[66] RESEARCH, T. M. MQTT and CoAP: Security and privacy issues in IoT and

IIoT communication protocols. https://www.trendmicro.com/vinfo/us/security/

news/internet-of-things/mqtt-and-coap-security-and-privacy-issues-in-iot-

and-iiot-communication-protocols.

[67] ROMERO, J. M. Hackers broadcast live stream of police camera at Podemos lead-

ers’ home. https://elpais.com/elpais/2019/04/08/inenglish/1554706393_909358.

html.

[68] Schneier, B. The Internet of Things is wildly insecure—and often unpatchable.

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html.

[69] Shodan. Shodan search engine front page. https://www.shodan.io/.

[70] Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vish-

wanath, A., and Sivaraman, V. Classifying IoT devices in smart environments

using network traffic characteristics. IEEE Transactions on Mobile Computing 18,
8 (Aug 2019), 1745–1759.

[71] Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake,

C., Vishwanath, A., and Sivaraman, V. Characterizing and classifying IoT

traffic in smart cities and campuses. In Proceedings of the IEEE Infocom Workshop
on Smart Cities and Urban Computing (May 2017), pp. 559–564.

[72] Sommer, R., and Paxson, V. Outside the closed world: On using machine learning

for network intrusion detection. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy (Washington, DC, USA, 2010), SP ’10, IEEE Computer Society,

pp. 305–316.

[73] Spring, T. Smart lock turns out to be not so smart, or secure. https://threatpost.

com/smart-lock-turns-out-to-be-not-so-smart-or-secure/146091/.

[74] Torabi, S., Bou-Harb, E., Assi, C., Galluscio, M., Boukhtouta, A., and Deb-

babi, M. Inferring, characterizing, and investigating Internet-scale malicious IoT

device activities: A network telescope perspective. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN) (June 2018),
pp. 562–573.

[75] Wang, H., Zhang, D., and Shin, K. G. Detecting SYN flooding attacks. In Joint
Conference of the IEEE Computer and Communications Societies (June 2002), vol. 3,
pp. 1530–1539.

[76] Wang, R., Jia, Z., and Ju, L. An entropy-based distributed DDoS detection

mechanism in software-defined networking. In IEEE Trustcom/BigDataSE/ISPA
(Aug 2015), vol. 1, pp. 310–317.

[77] Webe, D. Why it’s so hard to implement IoT security. https://www.securityweek.

com/why-its-so-hard-implement-iot-security.

[78] Wood, P., Gutierrez, C., and Bagchi, S. Denial of Service Elusion (DoSE):

Keeping clients connected for less. In IEEE 34th Symposium on Reliable Distributed
Systems (SRDS) (Sep. 2015), pp. 94–103.

[79] Xerox, C. 5 reasons why IoT security is difficult. https://www.xerox.com/en-

us/insights/iot-security.

[80] Zaalouk, A., Khondoker, R., Marx, R., and Bayarou, K. OrchSec: an

orchestrator-based architecture for enhancing network-security using network

monitoring and SDN control functions. In IEEE Network Operations and Manage-
ment Symposium (NOMS) (May 2014), pp. 1–9.

[81] Zhang, S. Creepy website is streaming from 73,000 private security cam-

eras. https://gizmodo.com/a-creepy-website-is-streaming-from-73-000-private-

secur-1655653510.

12

http://www.hping.org/hping3.html
https://ipvm.com/reports/dahua-oem
https://www.congress.gov/bill/116th-congress/house-bill/1668/text
https://www.congress.gov/bill/116th-congress/house-bill/1668/text
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://tools.ietf.org/html/rfc8520
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
https://www.allot.com/blog/new-research-shows-that-consumers-are-willing-to-pay-for-iot-services/
https://www.allot.com/blog/new-research-shows-that-consumers-are-willing-to-pay-for-iot-services/
https://macaddress.io/
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/-hide-n-seek-botnet-uses-peer-to-peer-infrastructure-to-compromise-iot-devices
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/-hide-n-seek-botnet-uses-peer-to-peer-infrastructure-to-compromise-iot-devices
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/-hide-n-seek-botnet-uses-peer-to-peer-infrastructure-to-compromise-iot-devices
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://www.publicsuffix.org/
https://www.publicsuffix.org/
https://openwrt.org/
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/mqtt-and-coap-security-and-privacy-issues-in-iot-and-iiot-communication-protocols
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/mqtt-and-coap-security-and-privacy-issues-in-iot-and-iiot-communication-protocols
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/mqtt-and-coap-security-and-privacy-issues-in-iot-and-iiot-communication-protocols
https://elpais.com/elpais/2019/04/08/inenglish/1554706393_909358.html
https://elpais.com/elpais/2019/04/08/inenglish/1554706393_909358.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.shodan.io/
https://threatpost.com/smart-lock-turns-out-to-be-not-so-smart-or-secure/146091/
https://threatpost.com/smart-lock-turns-out-to-be-not-so-smart-or-secure/146091/
https://www.securityweek.com/why-its-so-hard-implement-iot-security
https://www.securityweek.com/why-its-so-hard-implement-iot-security
https://www.xerox.com/en-us/insights/iot-security
https://www.xerox.com/en-us/insights/iot-security
https://gizmodo.com/a-creepy-website-is-streaming-from-73-000-private-secur-1655653510
https://gizmodo.com/a-creepy-website-is-streaming-from-73-000-private-secur-1655653510

	Abstract
	1 Introduction
	2 Methodology
	2.1 Device Detection
	2.2 Server Learning
	2.3 Traffic Filtering
	2.4 Deployment Incentives
	2.5 Countermeasures by Knowledgeable Adversaries

	3 Validation by Trace Replay
	3.1 False Positives with Benign Traffic
	3.2 True Positives and False Negatives with Attack Traffic

	4 Validation by Router Deployment
	5 Related Work
	5.1 IoT Device Detection
	5.2 IoT-Based DDoS Defense
	5.3 Traditional DDoS Defense

	6 Conclusion
	References

