
Peek Inside the Closed World:
Evaluating Autoencoder-Based Detection of DDoS to Cloud

Hang Guo
hangguo@isi.edu

USC/ISI

Xun Fan
xufan@microso�.com

Microso�

Anh Cao
anhcao@microso�.com

Microso�

Geo� Outhred
geo�o@microso�.com

Microso�

John Heidemann
johnh@isi.edu

USC/ISI

ABSTRACT
Machine-learning-based anomaly detection (ML-based AD) has
been successful at detecting DDoS events in the lab. However pub-
lished evaluations of ML-based AD have only had limited data and
have not provided insight into why it works. To address limited
evaluation against real-world data, we apply autoencoder, an exist-
ing ML-AD model, to 57 DDoS a�ack events captured at 5 cloud
IPs from a major cloud provider. To improve our understanding for
why ML-based AD works or not works, we interpret this data with
feature a�ribution and counterfactual explanation. We show that
our version of autoencoders work well overall: our models capture
nearly all malicious �ows to 2 of the 4 cloud IPs under a�acks (at
least 99.99%) but generate a few false negatives (5% and 9%) for the
remaining 2 IPs. We show that our models maintain near-zero false
positives on benign �ows to all 5 IPs. Our interpretation of results
shows that our models identify almost all malicious �ows with non-
whitelisted (non-WL) destination ports (99.92%) by learning the full
list of benign destination ports from training data (the normality).
Interpretation shows that although our models learn incomplete
normality for protocols and source ports, they still identify most
malicious �ows with non-WL protocols and blacklisted (BL) source
ports (100.0% and 97.5%) but risk false positives. Interpretation
also shows that our models only detect a few malicious �ows with
BL packet sizes (8.5%) by incorrectly inferring these BL sizes as
normal based on incomplete normality learned. We �nd our
models still detect a quarter of �ows (24.7%) with abnormal pay-
load contents even when they do not see payload by combining
anomalies from multiple �ow features. Lastly, we summarize the
implications of what we learn on applying autoencoder-based AD
in production.

1 INTRODUCTION
Anomaly detection (AD), as known as one-class classi�cation, is
a popular strategy in detecting DDoS a�acks and other types of
network intrusion, enabling responses such as �ltering. AD
identi�es malicious network tra�c by pro�ling benign tra�c and
�agging tra�c deviating from these benign pro�les as malicious.
AD thus implicitly assumes that one could pro�le all benign tra�c
pa�erns and infer the rest as malicious (closed world assumption
[44]). Comparing to binary classi�cation, another popular strategy
in DDoS detection that pro�les both benign and malicious tra�c
and look for tra�c similar to these known malicious pro�les, AD

could identify both known and potentially unknown malicious
tra�c.

Machine learning (ML) techniques lead to a new class of DDoS
detection study using ML-AD models such as one-class SVM ([5,
38, 45]) and neural networks ([10, 17, 20]). However, these studies
usually su�er from two major limitations. First, they evaluate their
methods with limited datasets, o�en using simulated tra�c, or
tra�c from universities or laboratories tra�c, or two public DDoS
datasets (DARPA/MIT [14] and KDD Cup [41]). It is thus unclear
how well their methods could detect real-world DDoS a�acks in
operational networks. Prior work has suggested that conclusion
based on tra�c from simulation and small environments do not
generalize to real-world environments at larger scales [34]. �e
widely used DARPA/MIT ([14]) and KDD CUP datasets ([41]) are
synthetic, 2-decades-old and with known problems, making them
inadequate for contemporary research [7, 34]. Second, these stud-
ies usually do not interpret their models’ detection and explain
why their models work or not work. Without interpretation on
why detection works it is di�cult to understand the strengths and
limitations of ML-based AD in DDoS detection and how one could
make the best use of ML-based AD in production environment.
Moreover, operators look for interpretation to gain con�dence in
and understand the limits of ML-based AD approaches [34].

Our paper acts as the �rst step towards addressing these two
limitations in prior DDoS study using ML-based AD.

Our �rst contribution is to evaluate the detection accuracy of
autoencoder, an existing ML-AD model, with real-world DDoS
tra�c from a large commercial cloud platform (§2.1). Speci�cally,
we apply our models to 57 DDoS a�ack events captured from 5
cloud IPs of this platform between late-May and early-July 2019
(§2.2). Detection results show that our models detects almost all
malicious a�ack �ows to 2 of these 4 cloud IPs under a�acks (at
least 99.99%) but generates a few false negatives (5% and 9%) for the
remaining 2 IPs (§3.1). We show that our models maintain near-zero
false positives on benign tra�c �ows to all 5 IPs (§3.2).

Our second contribution is to interpret our detection results with
feature a�ribution (§2.4.1) and counterfactual explanation (§2.4.2)
and show why our models work on certain malicious �ows but not
the rest (§3.4). Speci�cally, we show that our models identify almost
all malicious �ows with non-whitelisted (non-WL) destination ports
(99.92% of 1M) by learning the full list of benign destination ports
from training data (the normality). We shows that although our
models learn incomplete normality for protocols and source ports,
they still identify most, if not all, malicious �ows with non-WL

ar
X

iv
:1

91
2.

05
59

0v
2

 [
cs

.N
I]

 1
6

D
ec

 2
01

9

protocols (100.0% of 15k) and with blacklisted (BL) source ports
(97.5% of 5k) but risk false positives. We also show that our models
only detect a few malicious �ows with BL packet sizes (8.5% out
of 3k) by incorrectly inferring these BL sizes as normal based on
incomplete normality learned. Lastly, we shows our models detect a
quarter of �ows with abnormal payload contents (24.7% of 8k) even
when they do not see payload contents by combining anomalies
from multiple �ow features.

Out last contribution is to summarize the implications of what we
learn on using autoencoder-based AD in production (§4). We show
that autoencoder-based AD are be�er at detecting some anomalies
than others, and that autoencoder-based AD works best with certain
classes of anomalies (§4.1). We then show that noise-free training
data is not always necessary for AD (§4.2). We lastly show that
autoencoder-based AD and heuristic-based �lters each has its own
strengths and could be used jointly for the best of both worlds
(§4.3).

2 DATASETS AND METHODOLOGY
We examine real-world DDoS a�acks and interpret our ML-AD
model in §3. Our data is based on a large commercial cloud platform
(§2.1) from which we gather 57 DDoS a�ack events (§2.2). We then
describe our speci�c ML-AD model (§2.3) and how we interpret it
(§2.4).

2.1 Cloud Platform Overview
We study a large commercial cloud platform that is made up of
millions of servers from over 100 data centers across 140 countries
worldwide. �is cloud platform hosts a wide range of services, from
traditional websites to managed Internet-of-�ing infrastructure.
Each of these cloud services is assigned one or more public virtual
IPs (VIP). Global-facing services usually deploy multiple VIPs and
use each VIP to serve a di�erent geological regions.

�is cloud platform has seen increasing DDoS a�acks over the
past years and deploys “in-house” DDoS detection and mitigation.

In-house detection begins by detecting DDoS events based on
comparison of aggregate inbound tra�c to an VIP to a threshold.
�resholds are either supplied by the owners of cloud services or
decided by the system automatically from historical tra�c pa�erns.

In-house mitigation employs �ltering and rate limiting. A�er
a DDoS event has been detected, each inbound packet to that VIP
is checked and possibly dropped based on a series of heuristics.
�ese heuristics are �lters designed by domain experts to identify
and �lter known DDoS a�acks. Remaining packets are rate limited,
with any that pass the rate limiter passed to the VIP.

�e in-house methods consider the end of a VIP’s DDoS event
as when inbound tra�c rate to this VIP goes under DDoS threshold
for a certain amount of time. �e duration depends on the a�ack
type; here we simplify it to 15 minutes. In-house mitigation is only
applied when there is an ongoing DDoS event (called war time) and
are not otherwise applied (during peace time).

2.2 Cloud DDoS Data
To evaluate and interpret ML-based AD, we obtain peace and war-
time tra�c packet captures (pcaps) from this cloud platform and

extract benign customer tra�c and malicious DDoS a�ack from
these pcaps.

Tra�cPcaps: We obtain over 100 hours of inbound tra�c pcaps
to each of 5 VIPs we study. Each VIP’s pcaps include all war-time
tra�c and partial peace-time tra�c, observed at this VIP in a 8-
day period between late-May and early-July 2019. Table 1 shows
anonymized VIPs and speci�c times. �e pcaps are sampled, retain-
ing 1 in every 1000 packets. We use only partial peace-time tra�c
because we �nd adding more tra�c does not increase our models’
detection accuracy. Note that we observe SR3VP1 for extended 180
hours because this VIP receives much less tra�c than the other
VIPs.

�e 5 VIPs we study come from 3 di�erent cloud services, with
three instances of service SR1 (SR1VP1 to SR1VP3), each in a di�er-
ent data center and physical location, one instance of service SR2
(SR2VP1) and one instance of service SR3 (SR3VP1).

Di�erent VIPs see DDoS events (detected as described in §2.1)
of di�erent durations (Figure 1). Speci�cally, SR1VP3 sees a large
number of mostly short DDoS events, with about 71% of its 49
events being 1 second or less (see red crosses at 1-second duration
in Figure 1). �e cloud platform’s DDoS team suggests these very
brief DDoS events are likely botnets randomly probing IPs. In
comparison, SR1VP1 and SR1VP2 see smaller numbers of longer
DDoS events, with a median duration for their 20 and 27 events of
121 and 140 seconds, see Figure 1. SR2VP1 is frequently a�acked,
with about 59 hours of war time, and sees DDoS events of broad
range of durations (from 1 second to more than 14 hours). �e
cloud’s DDoS team reports that this VIP is hosting a critical service,
so long a�acks are likely a�empts to gain media a�ention. SR3VP1
reports zero a�ack events since service SR3 is rarely a�acked. We
thus use SR3VP1 to evaluate false positives with our detection
methods.

Benign and Malicious Tra�c: We report peace-time tra�c as
“benign tra�c”. While there may be very small a�acks in the peace-
time tra�c, the cloud platform considers any such events too small
to impact the service and does not �lter them. We considered addi-
tional �ltering to remove such a�acks, but le� them in to evaluate
our system on noisy, real-world tra�c [7]. War-time tra�c is also
a mix of benign user tra�c and malicious a�ack tra�c. We only
consider the fraction of war-time tra�c dropped by heuristic-based
�lters from in-house mitigation as malicious (annotated as “mali-
cious tra�c” herea�er), recalling these heuristics identify known
a�acks (§2.1). We only use these malicious tra�c to evaluate our
methods and ignore the rest of war-time tra�c (that either get rate
limited or forwarded to VIPs) since we do not have perfect ground
truth for them.

Benign and Malicious Flow Features: While in-house miti-
gation �lters at the packet level, using only per-packet features,
our models improve detection by using �ow-level statistics such as
packet counts and maximum �ow packet size. We thus aggregate
packets from benign and malicious tra�c as 5-tuple �ows. We
then extract the 23 �ow features shown in Table 2 from the �rst 10
seconds (an empirical threshold) of each 5-tuple �ow. We extract
�ows and �ow features using Argus [26]. Our features are the
standard ones provided by Argus; inventing new feature is not
the focus of this paper. We ignore source IPs out of concern

2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 100 1K 10K 50K

E
C

D
F

Duration of DDoS Events (Seconds)

SR1VP1 SR1VP2 SR1VP3 SR2VP1

Figure 1: DDoS Events’ Durations in Inbound Tra�c Pcaps

Layer Dimensions:
2848 284839 4 39 335

5 Hidden LayersInput Layer

335

Output Layer

Figure 2: Architecture for Our Autoencoders

Inbound Tra�c Pcaps Extracted Flows Training �reshold Validation Test
VIPs Peace Hrs War Hrs DDoS Evts Benign Malicious DDoS Evts Benign Benign Benign Malicious Benign Malicious

SR1VP1 110.32 2.31 20 9,930k 119k 20 1,000k 59.5k 59.5k 59.5k 59.5k 59.5k
SR1VP2 96.96 5.44 27 13,107k 1,046k 20 1,000k 523k 523k 523k 523k 523k
SR1VP3 118.88 1.36 49 10,704k 90k 7 1,000k 45k 45k 45k 45k 45k
SR2VP1 57.73 58.89 15 5,469k 37k 10 1,000k 18.5k 18.5k 18.5k 18.5k 18.5k
SR3VP1 182.99 0 0 698k 0 0 548k 50k 50k 0 50k 0

Table 1: Summary of Inbound Tra�c Pcaps and Extracted Tra�c Flows Used in �is Paper

that they may be spoofed. �ree of our features (source port, des-
tination port and protocol) have no ordering among their values,
while the other features are ordered. Directly using unordered
features would implicitly create an ordering among their values
(for example, implying that protocol 5 is more similar to protocol
6 than protocol 4 is). We use one-hot encoding [8] to avoid this
distortion. Speci�cally, we map protocol into 256 one-hot features
(is proto 0, is proto 1, … is proto 255), each with a binary value.
Similarly, we map ports into 1286 one-hot features, each represent-
ing a group of 51 adjacent ports (1 to 51, 52 to 102, … 65485 to
65535), with port 0 used to indicate both illegal TCP/UDP port zero
and non-existent port number in non-TCP-UDP �ows. (We group
every 51 ports because otherwise we will need 65536×2 one-hot
features to represent source and destination ports, more than our
machine can handle.) Grouping ports could cause false positives
or negatives if two common ports appear in the same aggregate,
we examined our data and found that all popular ports di�er by at
least 53 in the port space and we never group popular ports.

We summarize the number of extracted �ows (both benign and
malicious) and number of DDoS events in these malicious �ows
under “extracted �ows” of Table 1. Note that since we extract
malicious �ows from a subset of war-time tra�c that match the
in-house mitigation’s heuristics, the DDoS events in extracted �ows
are a subset of all DDoS events in inbound tra�c pcaps (Table 1).

We note that a limitation of our data is that it is dominantly UDP
(accounting for 99.87% of our 40M extracted �ows in Table 1) likely
due to the three cloud services we study mainly serve UDP tra�c.

2.3 DDoS Detection Techniques
Having extracted �ows, we describe the ML models we use and
how we train, validate and test these models with these �ows. We
developed our speci�c ML-based AD techniques ourselves, but we
follow the use of autoencoder like prior work [2, 4, 17, 18] and
we speci�cally follow the idea of N-BaIoT of using reconstruction

error to detect DDoS [17]. Our goal is not to show a new detection
method, but to evaluate current state-of-the-art methods with real
world data.

Model Overview: We use a type of neural-network ML model
called autoencoder because it is widely used in AD (such as sys-
tem monitoring [2], network intrusion detection [18] and outlier
detection [4]) and has been shown to detect DDoS a�acks accu-
rately in lab environment ([17]). While other ML models are also
used for AD, such as one-class SVM [5, 38, 45] and other neural
networks [3, 10, 20, 21]. We currently focus on autoencoder and
leave studying other models for future work.

Autoencoder is a symmetric neural network that reconstructs
its input by �rst compressing the input to a smaller dimension and
then expanding it back [37]. �e aim of autoencoder is to minimize
reconstruction error, the di�erences between input and output (the
reconstructed input). We compute the di�erence between input
and output vectors (Fin and Fout) as the mean of element-wise
square error, as shown in Equation 1 where N is the number of
elements in input (or output) vector and F iin and F iout are the i-th
element in input and output vector.

E(Fin, Fout) =
∑N
i=1(F iin − F iout)2

N
(1) Tdet = µE + 3σE (2)

To detect DDoS events, we train an autoencoder with only be-
nign tra�c �ows and identify malicious tra�c �ow by looking for
large reconstruction errors. �e rationale is the autoencoder learns
to recognize useful pa�erns in the benign �ows with e�ectively
lossy compression. When it encounters statistically di�erent �ows
like malicious tra�c, it cannot compress this anomalous tra�c
e�ciently and so the reconstruction results in relatively large re-
construction error, with the degree of error re�ecting the deviation
from normal of the anomaly.

We build a 6-layer neural network for each of our 5 VIPs, com-
pressing a 2848-by-1 input vector (2×1286 one-hot features for
ports, 256 one-hot features for protocols and the other 20 features

3

Sport Dport Proto SrcPkts SrcRate SrcLoad SIntPkt sTtl sMaxPktSz sMinPktSz SrcTCPBase
source dest protocol src-to-dst src-to-dst src-to-dst mean src-to-dst inter TTL in last src src-to-dst src-to-dst src TCP base
port port number pkt count pkt/s bits/s -pkt arrival time -to dst pkt max pkt size min pkt size sequence

TcpOpt {M, w, s, S, e, E, T, c, N, O, SS, D}
the existence of certain TCP option: max segment size (M), window scale (w), selective ACK OK (s), selective ACK (S), TCP echo (e), TCP echo reply (E),
TCP timestamp (T), TCP CC (c), TCP CC New (N), TCP CC Echo (O), TCP src congestion noti�cation (SS), TCP dest congestion noti�cation (D)

Table 2: Our 23 Flow Features (Merging 12 Features About Existence of Certain TCP Option) Before One-hot Encoding

in Table 2) to a 4-by-1 vector and expand it back symmetrically
(dimensions of each layer shown in Figure 2). As with many ML
systems, the speci�c choices of 4-by-1 and 6 layers are empirical,
although we also tried 8 layers without seeing much advantage.
We use ReLu [19] as activation function, L2 regulation [25] and
dropout [35] to prevent over��ing and mini-batch Adam gradi-
ent descent [13] for model optimization, all following standard
best practices [36]. Our implementation uses the python library
pyTorch [24].

Model Training: We train each VIP’s autoencoder to accurately
reconstruct benign �ows from this VIP.

We �rst randomly draw 1 million benign �ows from each VIP as
their training dataset (see “training” column of Table 1.) SR3VP1
observes only 698k benign �ows, even with extended observation,
so there we train on 548k benign �ows. (We experimented with
additional training data but did not �nd it helped)

We then pre-process training dataset by normalizing training
�ows’ feature values to approximate the same scale (about 0 to
1), following best practices [36]. �e one-hot features are already
normalized, but for a given other feature i of �ow w in the training
dataset (F iw in Equation 3), we normalize it with min-max normal-
ization (Equation 3 where F itmax and F itmin are the maximum and
minimum values for feature i in all training �ows).

We initialize four hyper-parameters in our models: mini-batch
size as 128, learning rate as 10−5, drop-out ratio as 50% and weight
decay for L2 regulation ([25]) as 10−5. (We tune these values later
during model validation if needed.)

Lastly, we train our models with normalized training data for 2
epochs. (Adding more epochs does not increase models’ detection
accuracy on validation datasets, and risks over��ing.)

�reshold Calculation: Detecting malicious �ows from large
reconstruction error requires a threshold to separate normal error
from anomalies. We calculate this threshold by estimating the
upper bound for benign �ows’ error. Speci�cally, we randomly
draw benign �ows from each VIP to form threshold datasets that
are distinct from training, validation, and test datasets (see the
“threshold” column of Table 1). We set the size of threshold dataset
to match the size of validation and test dataset (described later
this section). Similar to model training, we pre-process threshold
data with min-max normalization (Equation 3) and maximum and
minimum feature values extracted from training datasets (F itmax
and F itmin). We then apply trained models to �ows in threshold
dataset and record their reconstruction errors as E. We calculate
detection threshold (Tdet) with Equation 2 where µE and σE are
mean and standard deviation of E.

ˆF iw =
F iw − F itmax

F itmin − F itmax
(3) A(j) =

(F jin − F
j
out)2∑N

i=1(F iin − F iout)2
(4)

Model Validation: We validate detection accuracy of trained
models (with initial hyper-parameters) by applying them to de-
tect benign and malicious �ows in validation datasets. When we
encounter poor accuracy in the validation data, we tune hyper-
parameters of the models to improve validation accuracy.

To validate our model, we construct validation dataset for each
VIP by randomly drawing half malicious �ows from a VIP and equal
amount of random benign �ows from same VIP (shown under “vali-
dation” of Table 1). We pre-process validation dataset with min-max
normalization and F itmax and F itmin (Equation 3). We apply trained
models to detect benign and malicious �ows in validation sets and
check common accuracy metrics of detection results: mainly preci-
sion, recall and f1 score (Equation 5 where TP , FP and FN stands
for true positives, false positives and false negatives in identifying
malicious �ows). Note that for SR3VP1 where we only have benign
�ows, we instead examine its true negative ratio (TNR, the fraction
of benign �ows that get correctly detected.)

If any detection metric for a per-VIP model goes under 99%,
we tune this model’s hyper-parameters with random search [1],
by training multiple versions of this model, each with a set of
randomly-chosen values for hyper-parameters. We then select as
the �nal model the version that gets the highest f1 score against
the validation dataset and use this �nal model for all subsequent
detection. (We list hyperparamter values for our �nal models in
§3.)

prec =
T P

T P + F P
rec =

T P
T P + FN

f 1 = 2 ∗ prec ∗ r ec
prec + r ec

(5)

Model Testing: Finally, we report detection accuracy for our
trained and validated models by applying them to test datasets,
consisting of the other half of malicious �ows extracted from each
VIP and equal amount of random benign �ows from the same VIP
(see “Test” of Table 1.) Speci�cally, we �rst pre-process test dataset
with min-max normalization and F itmax and F itmin (Equation 3).
We then report our models’ detection precision, recall and f1 score
on test dataset. (Similar to validation, we report TNR for SR3VP1.)

2.4 Interpreting the Results of Detection
While our models follow best practices, we are the �rst to evaluate
such models with real-world data and interpret the results. We
interpret our models’ detection results with feature a�ribution
(§2.4.1) and counterfactual explanations analysis (§2.4.2).

2.4.1 Feature A�ribution. We use feature a�ribution analysis
to understand the contribution from each feature to the detection
of each �ow instance. Prior work used feature a�ribution [30, 31,
46, 47].�ey either a�ribute feature importance by evaluating the
di�erence in model output when perturbing each input feature

4

([46, 47]), or by taking the partial derivative of model output to
each input feature ([30, 31]).

Since our models’ detection is based on reconstruction error of
input �ow (Equation 1), which is the mean of per-feature errors
from all �ow features, we can measure a feature’s contribution to
detection by how much error it contributions to overall reconstruc-
tion error. We normalize per-feature error by dividing it by the
sum of error from all features, as in Equation 4, and a�ribute that
feature’s contribution as this normalized per-feature error. (Prior
work cannot use our simple form of feature a�ribution because they
focus on models that output classi�cation, rather than reconstruct
the input.)

2.4.2 Counterfactual Explanations. Counterfactual explanations
show how an input must change to signi�cantly change its detection
output, as advocated by prior work [16, 42].We use counterfactual
explanations to understand the normality our models learn for each
�ow feature, which in turn implies what values the models consider
anomalous.

Speci�cally, we �rst �nd a base �ow that is detected as benign,
then we repeatedly alter the target feature’s value in this base �ow
while keeping other features unchanged. We feed these altered
base �ows into our model to observe how much the reconstruction
error changes with each perturbation of target feature’s value: an
increase in errors suggests our models consider current feature
value more abnormal than the previous value, and vice versa. We
repeat this experiment on di�erent base �ows to see if our models
consistently consider certain target feature values more normal
than the other values, with relatively normal values suggesting
normality our models learned.

3 RESULTS
To understand how well ML-based AD work in detecting real-world
DDoS a�acks. We train and validate an autoencoder model for each
of our 5 VIPs using the training, threshold, validation, and test
datasets (Table 1) as described in §2.3. Our �nal models for SR1VP1
and SR2VP1 use tuned hyperparameters values (mini-batch sizes
64 and 32, learning rates about 2 × 10−5 and 10−5, drop-out ratio
both 10% and weight decay about 10−6 and 2 × 10−6). Our �nal
models for the remaining 3 VIPs use initial hyperparamter values
from §2.3.

With trained and validated models, we report detection accuracy
on test datasets in §3.1 and examine false positive rates in §3.2. In
§3.3, we evaluate our models on all extracted malicious �ows (recall
the test datasets contain only half extracted malicious �ows), and
we interpret why our models detect some malicious �ows but miss
others in §3.4.

3.1 Detection Accuracy on the Test Dataset
We evaluate accuracy by measuring precision, recall and the F1
score of our models’ detection of test datasets in Table 4. (We report
TNR for SR3VP1, recall §2.3.)

We �rst observe that our models almost never generate false
positives: 2,556 false positives out of all 696,000 tests of benign
�ows, a false positive ratio of 0.36%. In fact, we later show that
only 28 of these 2,556 are actual false positives in §3.2. Detection
precision (Equation 5) and TNR for all 5 VIPs are high (at least

98.90% in Table 4), suggesting our models almost always correctly
detecting benign tra�c (high TNR) and are rarely generating false
alerts (high precision).

Our second observation is that our models identify almost all
malicious �ows to 2 of the 4 VIPs under a�ack: detection recall
is 99.99% for SR1VP2 and 100% for SR1VP3 (Table 4). Our models
miss a small fraction of malicious �ows for the other 2 VIPs: 5.25%
for SR1VP1 and 8.63% SR2VP1 (Table 4). (We do not report recall
on SR3VP1 since this VIP sees no a�ack events §2.2.)

We conclude that our models identify most, if not all, malicious
�ows to all 4 VIPs under a�acks (recalls from 91.37% to 100%) while
maintaining near-zero false detections for all 5 VIPs.

3.2 Examining False Positives on Test Datasets
Our models make 2,556 false positives against the test datasets
(§3.1); we next compare these to in-house mitigation’s heuristics
such as whitelists of destination ports and protocols.

As shown in Table 3, we �nd most of our false positives (95.7%,
2,446 out of 2,556) are actually true positives (malicious �ows that
get correctly detected). Our training data is noisy and may contain
malicious tra�c (§2.2). Out of these 2,446 true-positive �ows, most
are malicious UDP �ows with non-whitelisted (non-WL) destination
ports (79.8% or 1,953) and malicious �ows using ICMP, a non-WL
protocol (19.9% or 487). We also �nd a very small fraction of true-
positive �ows using blacklisted (BL) source ports (0.2% or 4), and
a few with at least one packet with bad payload content (that fail
regular expressions required by in-house mitigation’s heuristics)
(0.1% or 2). (We show in §3.4.4 that although our models do not see
packet payload, they still detect some malicious �ows consisting
of packets with bad payload content based on anomalies in �ow
features.)

A few false positives (3.2%, 82 out of 2,446) are artifacts due to
misdirected TCP �ows. �ese misdirected �ows appear to originate
from our 5 VIPs, yet the pcaps we study contain only inbound
packets to these VIPs (§2.2). �ese misdirected �ows thus have
wrong values (all zeros) for the 8 �ow features counting source-to-
destination tra�c statistics such as packet count (feature SrcPkts
in Table 2). Argus has a known limitation (con�rmed with the
author) where a missing TCP SYN and SYN/ACK results in Argus
mislabeling the source and destination of a �ow, so these �ows
actually have source ports that are well-known service ports (mostly
443). We believe these missing TCP SYN and SYN/ACK packets are
likely dropped due to 1 in 1000 packet sampling (§2.2).

Lastly, we �nd the remaining 28 false positives are likely actual
false positives. Each of these 28 �ows (all TCPs) does not match
any heuristics used by in-house mitigation.

We conclude that out of 2,556 false positives reported in §3.1,
only a tiny fraction (1.1%, 28 out of 2,556) are actual false positives,
suggesting the actual false positive rate is near zero (0.00%, 28 out
of 696,000 test benign �ows) (We explore potential causes for these
28 actual false-positive TCP �ows in §3.4.1.)

3.3 Detection Accuracy On All Malicious Flows
Having shown our models identify most malicious �ows in test
dataset with near-zero false positives, we next explore how our
models identify all extracted malicious �ows. (�e test datasets

5

total false positives 2,556 (100.0%)
actual false positives 28 (1.1%)
actual true positives 2,446 (95.7%) (100.0%)

UDP �ows w non-WL dst port 1,953 (76.5%) (79.8%)
UDP �ows w BL src port 4 (0.2%) (0.2%)
UDP �ows w bad payload content 2 (0.1%) (0.1%)
�ows w non-WL protocols 487 (19.1%) (19.9%)

misdirected TCP �ows 82 (3.2%)
Table 3: False Positives on Test Dataset Breakdown

contain only half extracted malicious �ows §2.3.) Speci�cally, we
group malicious �ows by their main anomalies, as determined by
the in-house mitigation’s heuristics, and show which anomalies are
best detected by our models, and which are poorly detected.

As in Table 5, we show our models are near perfect at detecting
anomalies on whitelisted (WL) features with only a few benign
values that have unordered values (recall unordered features from
§2.2): our models capture all malicious �ows with non-WL protocol
(100.00% of about 15k) and nearly all malicious UDP �ows with non-
WL destination ports (99.92% of about 1M). We show our models
are reasonable at detecting anomalies in blacklisted (BL) features
(those with only a few malicious values) with unordered values:
our models identify nearly all UDP �ow with BL source ports (97.5%
of 5k) and most UDP �ows with illegal port 0 (66%, 4 out of 6).

However we �nd our models are bad at detecting anomalies on
BL features with ordered values (§2.2). Speci�cally, our models
only detect a few malicious �ows (8.5% of about 3k) consisting of at
least one packet with too small payload (in-house mitigation drops
UDP packets with payload smaller than a threshold). In §3.4.3, we
show that although our models do not see packet payload size, they
can infer if a UDP �ow is consisting of packets with small payloads
from the �ow features of maximum and minimum �ow packet size
(Table 2).

Lastly, we show our models detect a quarter of UDP �ows (24.7%
of 8k) containing at least one packets with bad payload contents
(that fail regular expressions required by in-house mitigation), de-
spite our models do not see packet payloads (Table 5).

3.4 Interpreting Detection of Malicious Flows
We explore why our models are much be�er at at detecting anom-
alies on whitelisted (WL) and blacklisted (BL) unordered features
(§3.4.1 and §3.4.2) than anomalies on BL ordered features (§3.4.3)
and how our models detect some �ows with anomalies in payload
content (§3.4.4).

3.4.1 Whitelisted Unordered Features. We show the reason that
our models are good at detecting anomalies in WL unordered fea-
tures (recall we detect 99.92% and 100% of UDP �ows with non-WL
destination port and protocol in Table 5) is that our models could
correctly learn these features’ normalities. (We consider a feature
WL if it has only a few benign values while the majority of its
values are malicious, judged by in-house mitigation’s heuristics.)

Learn Normality of Destination Ports: We show our models
correctly learn the whitelisting of destination ports used by in-
house mitigation with counterfactual explanation (§2.4.2). Speci�-
cally, we draw 100 random UDP �ows (that are detected as benign)
from each VIP’s test datasets as base �ows, alter these 500 base

 0
 0.5

 1

 0 5000
 10000

 15000
 20000

 25000
 30000

 35000
 40000

 45000
 50000

 55000
 60000

 65000

E
rr

o
r

Destination Port

Figure 3: Normalized Reconstruction Errors for 100 Base
Flows from SR1VP2 using Di�erent Destination Ports

�ows by enumerating their destination ports from 0 to 65535 with
an step size of 51 (0, 51, 102 … 65535) and feed altered base �ows
into models. (Note that having a sub-51 step size does not help be-
cause we group and one-hot encode every 51 adjacent ports in §2.2
and our models cannot distinguish the 51 ports from same group.)
We then watch for how base �ows’ error change as destination
ports change.

We �nd our models consistently consider all 500 base �ows with
non-WL ports much more abnormal than the same �ows with WL
ports. We use reconstruction errors from SR2VP1’s 100 base �ows
as example (other VIPs are similar). Since we only care about how
a base �ow’s error changes as its destination port changes (rather
than the exact values of these errors) and want to compare these
changes across all 100 base �ows from this VIP, we normalize the
set of errors resulted from one base �ow using di�erent destination
ports to range [0, 1] by dividing these errors with the maximum
error found among them. Figure 3 shows normalized errors of
SR2VP1’s 100 base �ow with di�erent destination ports. Speci�cally,
we present the 100 normalized errors resulting from 100 base �ows
using a certain destination port as a blue box and whiskers in
Figure 3 where the top and bo�om of the whisker shows maximum
and minimum of these errors, top and bo�om of the box are 2
and 98 percentiles of these errors and the black line in middle of
the box shows median. Figure 3 shows that all non-WL ports
lead to similarly high reconstruction errors and this pa�ern is
very consistent across all 100 base �ows from SR2VP1 (shown
as the horizontal black line at normalized error of 1 in Figure 3,
which is caused by the blue boxes and whiskers for all non-WL
ports collapsing with their black lines for medians). We also �nd
consistently small reconstruction error at the one WL port for
SR2VP1 (shown as the blue boxes near port 5000 in Figure 3, with
median about 0.05).

We �nd for 298 of these 500 base �ows (100 from SR1VP1, 29 from
SR1VP2, 43 from SR1VP3, 100 from SR2VP1 and 27 from SR3VP1),
our models consider base �ows malicious when they use non-WL
destination ports, suggesting for these base �ows, anomaly from
non-WL destination port alone could trigger models’ detections
(recalling base �ows are detected as benign in the �rst place).

We conclude that our models correctly learn normality of desti-
nation ports by consistently consider base �ows with non-WL port
more abnormal (for all 500 base �ows) and even malicious (for 298
of 500 base �ows).

Detect Anomalies on Destination Ports: We next show how
our models use the learned normality to detect almost all mali-
cious �ows with non-WL destination ports (99.92%; 1,260,943 out
of 1,261,951 , from Table 5) with feature a�ribution analysis (§2.4.1).

6

VIP Precision Recall F1-Score TNR
SR1VP1 98.90% 94.75% 96.78% –
SR1VP2 99.69% 99.99% 99.83% –
SR1VP3 99.81% 100.0% 99.90% –
SR2VP1 99.50% 91.37% 95.26% –
SR3VP1 – – – 99.68%

Table 4: Detection to Test Dataset

Total Flows by Main Anomalies Detected Flows (TP) If Only Main Anom
Main Anomaly Count Count Frac of Total Count Frac of TP
Flows w Non-WL Protocol 15,206 15,206 100.00% 15,206 100.00%
UDP Flows w Non-WL Dst Port 1,261,951 1,260,943 99.92% 18,279 1.45%
UDP Flows w BL Src Port 5,334 5,201 97.5% 11 0.21%
UDP Flows w Invalid Port Zero 6 4 66% 2 50%
UDP Flows w Too Small Payload 2,522 215 8.5% 0 0%
UDP Flows w Bad Payload Contents 8,229 2,036 24.7% 0 0.0%
Table 5: Detection to All Malicious Flows Breakdown by Main Anomalies

 0

 0.5

 1

 0 17 34 51 68 85 102
 119

 136
 153

 170
 187

 204
 221

 238
 255

E
rr

o
r

Protocol

Figure 4: Normalized Reconstruction Errors for 100 Base
Flows from SR3VP1 using Di�erent Protocols

We �nd that when our models detect these malicious �ows, anom-
alies from destination ports usually provide most reconstruction
error that causes detection (on average 0.80× threshold of errors
in 98.55% of true-positive detections). Our models thus rely on the
help from anomalies in other features for these detections, mainly
Sport, sMaxPktSz, sMinPktSz and SIntPkt (at least 10% a�ributions
in 100.00%, 84.3%, 84.0% and 3.53% of these detections, recalling
features from Table 2). We also �nd that anomalies from
the destination port alone will only trigger a small fraction (1.45%;
right-most two columns of Table 5) of these true-positive detections,
which is not consistent with our counterfactual result earlier where
anomalies from non-WL destination ports alone triggers detections
for 298 of our 500 base �ows (about 60%). One possible explanation
is sampling error: non-destination-port features in our 500 base
�ows happen to provide more per-feature errors than their counter-
parts in these malicious �ows, requiring less per-feature errors from
destination port in base �ows to trigger detection. (In comparison,
we observe consistent counterfactual results and actual detection
results for �ows with non-WL protocols later in this section.)

We �nd all of our models’ false negatives (0.08%, 1,008 out of
1,261,951 Table 5) are artifacts of our one-hot encoding of desti-
nation port. Speci�cally, since we encode every adjacent 51 des-
tination ports as one one-hot feature (§2.2), our models can not
distinguish among these ports. Our models miss these 1,008 false-
negative �ows because our models consider their destination ports
the same as the WL ports, because their ports are close to WL ports
in values (within 51).

We conclude that our models correctly learns the normality of
destination port and detects almost all malicious UDP �ows with
non-WL destination ports, mostly by combining anomalies from
destination port and other features.

Learn Normality of Protocols: Despite identifying all mali-
cious �ows with non-WL protocol (Table 5) we show our models
actually fail to learn the complete normality of protocols. Per heuris-
tics from in-house mitigation, UDP, TCP and 3 other protocols
(omi�ed for security) are all WL for some cloud service: UDP for

all three services we study, TCP for both SR1 and SR3 and 3 other
protocols for SR3. By applying counterfactual explanation to same
500 base �ows from destination port analysis and varying their
protocols from 0 to 255, we �nd our models consistently consider
all 500 base �ows with non-UDP protocols more abnormal (than the
same base �ows but with UDP) and consider 298 of these 500 base
�ows malicious when using non-UDP protocols. As an example, we
show normalized errors from 100 base �ows of SR3VP1 in Figure 4.
(Other 4 VIPs are similar.) From Figure 4, we �nd all protocols ex-
cept UDP (17) consistently lead to similarly high errors, suggesting
our models only learn the whitelisting of UDP. We conclude that
our models learn incomplete normality for protocols for all our 5
VIPs by only considering one of 5 WL protocols relatively normal.

We believe the reasons our models fail to learn non-UDP WL pro-
tocols is that they are under-representing in training data. Specif-
ically, while UDP accounts for almost all training data for our 5
VIPs (99.87% of 4.5M), TCP accounts for only a tiny fraction (0.01%
of 4.5M) and the 3 other WL protocols are completely missing. We
note that TCP show up even less than noises (non-WL protocols,
showing up in 0.11% of 4.5M) in training data, suggesting that it is
actually reasonable for our models to not learn infrequent protocol
values like TCP otherwise it risks learning noises.

Detect Anomaly on Protocols: Having learned incomplete
normality of protocols, our models risk false positive by consider-
ing benign �ow with WL non-UDP protocol abnormal but should
still be able to detect malicious �ows with non-WL protocols. To
support our argument, we �rst show that our models detect all
15,206 malicious �ows using non-WL protocols (Table 5) and that
all these detections could be triggered by anomaly from protocol
alone. We argue the 28 false positive our models made on test
dataset (§3.2) are likely due to our models consider TCP protocol
used by these 28 �ows abnormal based on the incomplete normality
learned. We support our hypothesis by showing that protocol is the
highest-a�ributing feature in 27 of these 28 detection false positives
(second highest for the rest 1 false positive), providing in average
about 0.85× threshold of errors. (Anomalies from protocol alone
could trigger for 3 of these 28 detection false positives.)

3.4.2 Blacklisted Unordered Features. We next show that while
our models fail to learn complete anomaly of BL source ports, they
still detect most malicious �ows with BL source ports (97.5%, or
5,201 out of 5,334) by considering all source ports (including BL
ones), except the ones frequently seen in training data, as equally
abnormal. (We consider a feature BL if it has only a small number
of malicious values while the rest majority of its values are benign,
judging from heuristics used by in-house mitigation.)

7

Learn Normality of Source Ports: Similar to our analysis of
destination port (§3.4.1), we explore what source ports do our mod-
els consider relatively abnormal by altering source port from the
same 500 base �ows from 0 to 65535 with an step size of 51 and
watch for change in reconstruction errors of base �ows.

We �nd our models consistently consider base �ows using one to
two source ports frequently seen in training data (called “frequent
training ports” for simplicity) much more normal than same �ows
using the rest source ports. We show normalized reconstruction
errors of SR2VP1’s 100 base �ows in Figure 5 as example. (We
summarize normalized errors for other 4 VIPs at the end of this
paragraph.) We �nd one non-BL source port 3111 with consistently
low error (shown as blue box and whisker on bo�om le� of Figure 5,
with median about 0.003) likely due to it corresponds to the most
frequent training source port 3074 (in 75.31% of 998k training UDP
�ows of SR2VP1). (Ports in range 3061 to 3111, including 3074,
look the same to our models due to we group and one-hot encode
adjacent 51 ports.) We �nd all the rest source ports, including
the BL ones, consistently get high errors (shown as the horizontal
black line around error of 1 in Figure 5). We report similar trend in
normalized reconstruction errors for other 4 VIPs: they consistently
give the most-frequent training ports (all non-BL) similarly low
errors and the rest source ports (including BL ones) with similarly
high errors. �e only exception is that we �nd SR1VP1 also con-
sistently gives a BL source port (omi�ed for security concern) low
error because this source port is the second most-frequent training
port (in 1.21% of 999k UDP training �ows from SR1VP1). Lastly,
we �nd our models never consider any of these 500 base �ows
malicious regardless of their source ports, suggesting the anomaly
from source ports alone cannot trigger detection. We conclude that
our models learn incomplete normality of source ports for 4 VIPS
(all except SR1VP1) by only considering some non-BL source ports
(frequent training ports) instead of all non-BL ports as relatively
normal. Our models learns incorrect normality of source ports for
SR1VP1 by considering both one non-BL port (frequent training
port) and one BL port relatively normal, due to noises (�ows with
this BL port) in training data.

Detect Anomaly on Source Ports: We show the incomplete
normalities our models learn still enable detecting most malicious
�ows with BL source ports (5,201 out of 5,334, 97.5%, recall Table 5)
due to our models consider all except frequent training ports (in-
cluding BL ones) relatively abnormal. Similar to destination port,
we �nd anomaly from source ports usually provides most but not all
reconstructing errors in true-positive detections (providing in aver-
age about 0.79× threshold of errors in 99.79% of these true-positive
detection). Our models thus relies on anomaly from additional
features to trigger these detections, mainly sMaxPktSz, sMinPktSz,
SIntPkt, SrcPkts, TcpOpt M and sTtl (recalling features from Ta-
ble 2), each with at least 10% a�ribution in a good fraction of (from
85.63% to 8.17%) of these detections. (We �nd our models could
only detects about 0.21% true positive solely base on anomaly from
source port, as in Table 5, consistent with our counterfactual results
where no base �ow get considered malicious due to its source port.)

We believe the 133 false negatives of our models result from
inability to enough anomalies from other features in these �ows.
To support this hypothesis, we show that in these false negatives,
source ports typically provide about 0.64× the threshold of errors,

 0
 0.5

 1

 0 5000
 10000

 15000
 20000

 25000
 30000

 35000
 40000

 45000
 50000

 55000
 60000

 65000

E
rr

o
r

Source Port

Figure 5: Normalized Reconstruction Errors for 100 Base
Flows from SR2VP1 using Di�erent Source Ports

similar to what source ports provide in most true positives (0.79×
threshold). We also show that in these false-negative detections, in
average 92% of the �ow reconstruction errors come from source
ports, suggesting our models cannot �nd too much anomaly from
other features. (We see no false negative caused by our models
incorrectly consider one BL source port from SR1VP1 relatively
normal.)

By considering all except frequent training source ports relatively
abnormal, our models risk generating false positive by considering
non-BL source port of an benign �ow abnormal. Luckily, we �nd
no such false positives in test data (§3.2).

Detect UDP Flows with Invalid Port Zero: Our models also
missed 2 out of 6 malicious DNS �ows with either source or des-
tination port as 0 (Table 5). We believe these misses are caused
by two reasons. First, our models have no way to infer port 0 is
special (invalid) because there are a tiny fraction of UDP �ows with
0 as source or destination port in training dataset as noise (0.16% of
4.5M training UDP �ows), Second, since our models do not know
port 0 is special and invalid, they simply consider port 0 as a regular
non-WL destination port or non-frequent-training source port. As
a result, �ows with destination or source port 0 share the same
chance to be missed as �ows with any non-WL destination port or
with any non-frequent-training source port. (Recall from Table 5
that we missed 133 malicious �ows with BL source ports, which
are also not frequently seen in training data.)

3.4.3 Blacklisted Ordered Features. We next explore why our
model for SR2VP1 is bad at detecting malicious UDP �ows consist-
ing of at least one UDP packets with too small payloads (smaller
than a threshold, omi�ed for security). (Other VIPs do not �lter
on small packet payload.) Note that although our model does not
see packet payload sizes, it could still detect these �ows based on
features sMaxPktSz and sMinPktSz (the maximum and minimum
packet size in �ows, recalling Table 2). �e rationale is that since we
�nd all too-small-payload UDP packets in our data are either 56 or
60 bytes and all malicious UDP �ows consisting of these packets are
either made of all 56 or all 60-byte packets, these malicious �ows
have only two possible sMaxPktSz and sMinPktSz combinations:
both 56 or both 60. Since UDP training �ows for SR2VP1 rarely have
these two sMaxPktSz and sMinPktSz combinations (0.01% of 998M,
not bad comparing to, for example, 0.46% noises for WL destina-
tion port in §3.4.1), detecting �ows consisting of too-small-payload
packets is equivalent to detecting �ows with two BL sMaxPktSz
and sMinPktSz combinations (both 56 and both 60).

Learn Normality of Packet Sizes: We use counterfactual ex-
planation to understand what sMaxPktSz and sMinPktSz combina-
tions are considered relatively abnormal. We draw 10 random base

8

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

sM
in

P
kt

S
z

sMaxPktSz

0

0.5Thre

Thre

1.5Thre

2Thre

(a) SR1VP1 (abnormal when both large)

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

sM
in

P
kt

S
z

sMaxPktSz

0

0.5Thre

Thre

1.5Thre

2Thre

(b) SR2VP1 (abnormal when either large)

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

sM
in

P
kt

S
z

sMaxPktSz

0

0.5Thre

Thre

1.5Thre

2Thre

(c) SR3VP1 (abnormal when both small)

Figure 6: Reconstruction Errors for 1 Base Flow from 3 VIPs with Varying Packet Sizes

 0
 100
 200
 300
 400
 500

 0 100 200 300 400 500

SR1VP1

 0
 100
 200
 300
 400
 500

 0 100 200 300 400 500

SR1VP2

 0
 100
 200
 300
 400
 500

 0 100 200 300 400 500

SR1VP3

 0
 100
 200
 300
 400
 500

 0 100 200 300 400 500

SR2VP1

 0
 100
 200
 300
 400
 500

 0 100 200 300 400 500

SR3VP1

Figure 7: Frequent Combinations of sMaxPktSz (X axis) and sMinPktSz (Y axis) in Training UDP Flows

�ows from test dataset of 5 VIPs, vary sMaxPktSz and sMinPktSz
in base �ows from 0 to 512 bytes (the largest packet size we �nd in
all training, threshold, validation and test �ows in Table 1) with a
step size of 1 and watch for the change in base �ows’ errors.

We �nd our models for the three VIPs from SR1 consistently
consider base �ows more abnormal when both sMaxPktSz and
sMinPktSz are larger. We show reconstruction errors from one base
�ow from SR1VP1 as an example (Figure 6a): this �ow’ reconstruc-
tion errors increases when sMaxPktSz and sMinPktSz both increase
from 0 to 512, shown as the black and blue (indicating errors from
near zero to about 0.5× threshold) on le� bo�om gradually becom-
ing red and white on top right (indicating errors from about 1.5×
threshold to about 2×threshold). We �nd our model for SR2VP1 also
consistently considers larger sMaxPktSz and sMinPktSz abnormal
but not when they are both large (see Figure 6b for reconstruction
errors for one of its base �ow). We show our model for SR3VP1
consistently considers base �ows more abnormal when sMaxPktSz
and sMinPktSz are both small (see Figure 6c for reconstruction
errors of one of its base �ows).

We show the reason our models consider di�erent sMaxPktSz
and sMinPktSz combinations abnormal is that they see di�erent
benign combinations in training �ows and consider combinations
more di�erent from those in training �ows as more abnormal. We
plot frequent sMaxPktSz and sMinPktSz combinations (at least 1000
occurrence) in each VIP’s training UDP �ows in Figure 7. We �nd
three VIPs from SR1 consider both sMaxPktSz and sMinPktSz being
large as abnormal because they mostly see �ows with sMaxPktSz
and sMinPktSz both small in training data (both from 94 to 104
bytes). �e only exception is that we �nd a few of SR1VP1’ training
UDP �ows (about 1.42% of 999M) have sMaxPktSz and sMinPktSz of
both 512 bytes (see blue pluses on right top corner of SR1VP1’s chart
in Figure 7). However we �nd our model for SR1VP1 still considers
sMaxPktSz and sMinPktSz of both 512 relatively abnormal (see the
white top right corner of Figure 6a), likely due to our models treat

these both-512 combinations in training data as noises. We �nd
SR2VP1 consider �ows with big sMaxPktSz and small sMinPktSz (or
the other way around) abnormal because it have seen sMaxPktSz
and sMinPktSz being both small and both big in its training data
(both from 74 to 512 bytes) . We �nd SR3VP1 consider sMaxPktSz
and sMinPktSz being both small abnormal because it mostly see
them being both big in its training data (both from 397 to 512 bytes).

We conclude our models learn incomplete normality of sMax-
PktSz and sMinPktSz combinations for all 5 VIPs by considering
some non-BL combinations (the frequent training ones), instead of
all non-BL combinations, as relatively normal. (Recall that SR2VP1
BL sMaxPktSz and sMinPktSz combination of both 56 and both 60
while other 4 VIPs BL no combinations.)

Detect Anomalies in Packet Sizes: We show that by learning
incomplete normality, our model for SR2VP1 completely fails to
infer the BL sMaxPktSz and sMinPktSz combinations are relatively
abnormal. In Figure 6b, we �nd the two BL combinations (both
56 and both 60) are ge�ing the lowest errors (shown as the black
bo�om le� corner of Figure 6b), likely due to they are too similar
to some frequent combinations in SR2VP1’s training data (such
as both 74 bytes, as shown in SR2VP1’s chart in Figure 7) to be
considered abnormal by our model.

Since our models fail to learn BL sMaxPktSz and sMinPktSz com-
binations are abnormal, it is not surprising that our models only
detect a few malicious �ows with these BL combinations (8.5%, 215
out of 2,522 Table 5). We �nd sMaxPktSz and sMinPktSz only con-
tribute in average about 0.002× threshold of reconstruction error
in detection of these 2,522 malicious �ows with BL combinations
(including the 215 true-positive detections), suggesting these detec-
tions almost completely depend on anomaly from other features.

3.4.4 Combining Anomalies from Multiple Features. Recall that
by combining anomalies from multiple features, our models still
detect malicious �ows when anomalies from source (§3.4.2) or
destination port (§3.4.1) alone are not enough to trigger detection

9

and when our models fail to infer BL sMaxPktSz and sMinPktSz
combinations are abnormal (§3.4.3). Similarly, our models detect
a quarter malicious UDP �ows (24.7%, 2,036 out of 8,229 Table 5)
whose main anomaly is in packet payload content (that fail regular
expressions required by in-house mitigation) and is not visible to
our models.

To understand how good our models are at �nding anomalies
from multiple features, We breakdown number of features with
signi�cant a�ributions (at least 10%) in all detected malicious �ows
(recall Table 5). (We calculate source port’s a�ribution as the sum
of a�ributions from its 1286 one-hot features. Similarly, we calcu-
late a�ributions for destination port and protocol.) We �nd our
models uses multiple signi�cantly-a�ributing features in nearly all
detections (99.90% of 1.2M) and uses 4 in most detections (79.16%
of 1.2M).

4 IMPLICATIONS
We next distill the detailed analysis of ML-based AD to three im-
plications: leverage the strengths of anomaly detection, training
with somewhat noisy data is possible, and combinations of AD and
heuristics can help both.

4.1 Use Anomaly Detection to Its Strengths
Prior work has suggested that ML models are by nature be�er
at �nding similarity to training data (binary classi�cation) than
�nding deviations from it (anomaly detection) [34, 44]. We argue
that even for AD, our autoencoder models are be�er at detecting
some anomalies than others, and that autoencoder-based AD works
best with certain classes of anomalies. Speci�cally, we show that
our models are be�er at detecting anomalies on whitelisted (WL)
features than blacklisted (BL) features because they could learn
correct normality for WL features (§4.1.1). We also show that our
models are be�er at detecting anomalies in unordered features
than in ordered features because even with incomplete normality,
models could still detect anomalies in unordered feature with high
recall (§4.1.2).

4.1.1 Learn Normality of Features. Since AD is about inferring
values deviating from normality as abnormal, learning correct nor-
mality is key to reliable AD. Our models learn the most frequent
feature values in training data as normality (§3.4.1, §3.4.2 and §3.4.3).
For models to learn correct normality of a feature, all of its benign
values need to be well-represented in training data. Since by de�ni-
tion WL features have only a few benign values, while the majority
of values for BL features are benign, it is more likely for WL features
to have all its benign values well-represented in training dataset.
For example, our models correctly learn normality for WL desti-
nation port because the one WL port is the most frequent port in
training data, resulting in perfect detection of malicious �ow with
non-WL destination ports (§3.4.1). In comparison, while there are
thousands of non-BL source ports, our models only learn 1 of them
(the most frequent one in training data) as relatively normal (§3.4.2).
(Note that our models do not always learn correct normality form
WL features. For example, our models only learn 1 out of 5 WL
protocols as normal in §3.4.1 because the rest 4 protocols are either
infrequent or non-existent in training data.)

4.1.2 Detect with Incomplete Normality of Features. When only
part of a feature’s benign values are well-represented in training
data, as is o�en the case for BL features, our models learn an in-
complete normality, capturing only some benign feature values as
normal.

We show that with incomplete normality of unordered features,
our models still detect malicious �ows as anomalous based on un-
ordered features with high recall (while risking false positives).
Speci�cally, a�er learning incomplete normality for target un-
ordered features,we �nd our models simply infer the rest values for
target feature (including the rest benign values and all malicious
values) as equally abnormal, enabling detection of malicious �ows
with malicious target feature values, and risking identifying benign
�ows with benign target feature values as abnormal. For example,
by only learning 1 of 5 WL protocols (UDP) as normal in §3.4.1, our
models identify all 15,206 malicious �ows with non-WL protocol,
but they generate 28 false positives using WL protocol TCP, since
they incorrectly consider it abnormal (§3.4.1). Similarly, by only
learning the most frequent non-BL source ports as normal and
all other ports (including all BL ports) as relatively abnormal, our
models identify almost all malicious UDP �ows with these BL ports
(97.5%, 5,201 out of 5,334) but risk false positives (although we do
not �nd such false positive).

We show that, however, with incomplete normality of ordered
features, our models risk low-recall detections. A�er learning par-
tial benign values from target ordered features as normal, our mod-
els consider values more di�erent from these benign values as more
abnormal, risk incorrectly considering malicious values normal if
they happen to be numerically close to these benign values. As
a example, our models only detect a small fraction of malicious
UDP �ows with BL sMaxPktSz and sMinPktSz combinations (8.5%,
215 out of 2,522) almost entirely relying on anomaly from other
features (§3.4.3), because our models do not consider these BL com-
binations abnormal since they are similar to some frequent benign
combinations in training data (that our models consider normal).

Our observations support prior belief that perfect model of nor-
mality is required for reliable AD ([34]) while complementing it
by showing that when normality is incomplete, our models could
still reliably identify malicious �ows with anomalies on unordered
features.

4.2 Noise-Free Data is Not Always Necessary
Prior work suggests that one reason AD may not be applicable to
network intrusion detection is that the a�ack-free training data
that many AD study assumes does not exist outside simulation [7].
Our results supports their claim—we �nd some brief a�acks in our
training data. However, our results refutes the claim that noisy
data makes AD impossible, since our AD system trains successfully
with noisy data, provided training data is representative, with all
benign values of target features are well-represented in that data.

Speci�cally, we show that, given representative training data,
ML-based AD can learn normality in spite of noise. For example, our
models correctly learn the normality of whitelisted (WL) destination
port despite noise in the training data (0.46% of 4.5M UDP �ows are
sent to non-WL port) because the WL ports are the most frequent in
training data (99.54% of 4.5M). We also show that when some benign

10

values of target features are under-represented in training data,
noise be confused with normality, because both noise and under-
represented benign values are infrequently seen. For example, in
§3.4.2, our model for SR1VP1 learns a blacklisted (BL) source port
(noise) as normal because this port is the second most frequent
(in 1.21% of training UDP �ows, more frequent than all under-
represented non-BL ports). In §3.4.1, our models fail to learn under-
represented WL protocol TCP (in 0.01% of training �ows) as normal
likely due to our models consider TCP as noises (considering actual
noises show up in 0.22% of training �ows, more frequent than TCP).

4.3 Combine AD and Heuristic-Based Filters
Finally, we show the potential for join use of heuristic-based �lters
like in-house mitigation and autoencoder-based AD, since each has
its own strengths.

We �nd our models are very good at �nding and using anomalies
from multiple features (4 in detection to most malicious �ows §3.4.4).
ML-based AD is particularly important when the anomalies are not
obvious to human perception, such as anomalies on �ow packet
count, �ow packet TTLs, and �ow inter-packet arrival time (recall
our models use these features to detect malicious �ows with BL
source port in §3.4.2) However, we �nd our models are not very
certain about each one of these anomaly (models would have missed
97.15% of all 1.2M detected malicious �ows in Table 5 if only using
the highest-a�ributing feature), and as a result it almost always
detect malicious �ow by combining multiple anomaly (in detecting
99.90% of all 1.2M malicious �ows).

�e heuristic-base �lter, by relying on human expertise, is very
good at detecting malicious �ow based on single anomaly (consider
the single main anomaly identi�ed by in-house mitigation’s heuris-
tics in Table 5). For example, a �ow with non-whitelisted (non-WL)
destination port is certainly malicious because the server only serve
WL ports. (Note that although in-house mitigation uses multiple
heuristic-based �lters, only one �lter is used in detecting a given
malicious �ows: the highest-priority �lter triggered by this �ow.)
However we argue that it is more challenging for heuristic-based
�lters to make use of more subtle features to indicate malice, such
as �ow inter-packet arrival time or packet TTLs. Our models are
able to make use of these features (§3.4.2), and can combine multiple
suggestive features.

We propose two possible strategies to combine heuristic-based
�lters and autoencoder-based AD. �e �rst is to simply stack them:
apply the heuristic �lter �rst, to cover intuitive anomalies with great
certainty. �en add ML-based AD to covering additional anomalies
that are not obvious or require combinations of features. Our second
strategy is to build new heuristics based on interpretations of what
the autoencoder-based AD has discovered, as discussed in §3.4.
Such “ML-discovered” �lters could directly use the ML model, or
we could extract the relevant features into a new implementation.

5 RELATEDWORK
To the best of our knowledge, we are the �rst a�empt to address
the two limitations (limited evaluation dataset and no detection
interpretations) in prior DDoS detection study using ML-based AD.

5.1 DDoS Study using ML-based AD
�e most related class of prior work are those also detect DDoS
a�acks with ML-AD models.

Most prior work in this class train some form of ML-AD models,
such as one-class SVM models ([5, 38, 45]) and neural network mod-
els (autoencoder [17], GRU network [20] and multiple models such
as fuzzy ARTMAP [10]), with benign tra�c and detect a�acks by
looking for deviations from these benign tra�c. Since these prior
work mostly test their models with limited datasets including simu-
lation [5, 10], lab tra�c [17, 20, 38, 45] and DARPA/MIT dataset [38],
it is not clear how well their methods could work in real-world
production environment ([7, 34]). Moreover, they usually do not
interpret their models’ detection decision nor explore why their
models work or not work in detecting certain DDoS a�acks. In
comparison, we evaluate our models with real-world benign and
a�ack tra�c from a major cloud provider and show our models
work well in production environment in general: capturing most,
if not all, malicious �ows to 4 VIPs under a�ack while maintaining
near-zero false positives. We also interpret our detection results and
show why our models work well on a�acks of certain anomalies
but not as well on the others.

Two prior work in this class uses clustering algorithms (K-mean [40]
and single-linkage [23]) to separate benign and malicious tra�c
�ows into di�erent clusters. Although their detection results
are intuitively interpretable (a �ow is �agged as malicious since
its features are qualitatively close to features of other �ows in the
“malicious cluster”), they rely on manual inspection to determine
which clusters are malicious. �ey also evaluate their methods with
limited datasets (lab data [40] and KDD datasets [23]). In compari-
son, we do not rely on manual inspection for our detection, and we
test our methods on real-world tra�c from a large cloud platform.

5.2 DDoS Study using Other Techniques
Many prior work detect DDoS a�acks with other techniques. We
classify them into following 3 classes.

ML-based binary classi�cation: �is class of papers train
some form of ML binary classi�cation models (such as KNN [6],
decision tree [6, 32], two-class SVM [9, 11], random forest [6] and
neural network models [27–29]) with both benign and a�ack tra�c.
�ese ML models thus identify a�acks similar to the ones they
have seen during training. In comparison, we focus on a di�erent
model (ML-AD model) and by training with only benign tra�c and
looking for deviations from these benign tra�c, our models do not
rely on on knowledge of known a�acks and have the ability to
identify potential unknown a�acks.

Statistical AD: �is class of papers applying statistical models
(such as adaptive threshold [33], cumulative sum [22, 33], entropy-
based analysis [15] and Bayesian theorem [12]) to identify abnormal
tra�c pa�ern that is signi�cantly di�erent from some or all of
previously seen (benign) tra�c pa�ern. �ese papers thus could
also cover potentially unknown a�acks. In comparison, we focus
on AD based on ML models instead of statistical models.

Heuristic-based rule: �is class of papers use heuristic-based
rules to detect speci�c types of a�acks matching their heuristics.
For example, history-based IP �ltering remembers frequent remote
IPs during peace time and consider tra�c from other IPs during

11

a�ack time as potential DDoS tra�c [39]. Hop-count based �ltering
identi�es spoofed DDoS packets by remembering peace-time IP
to (estimated) hop count mapping and considering packets with
unusual IP-to-hop-count mapping during a�ack time as spoofed
DDoS packets [43]. In comparison, we use a di�erent method
(ML-based AD) and could cover many di�erent types of a�acks
instead of only a speci�c type.

6 CONCLUSION
�is paper addressed two limitations in prior studies of machine-
learning-based anomaly detection: use of real-world data, and
interpretation of why the models are successful. We applying
autoencoder-based AD to 57 real-world DDoS events captured
at 5 VIPs of a large commercial cloud provider. We used feature
a�ribution and counterfactual techniques to explain when our mod-
els worked well and when they did not. Key results are that our
models work well, detecting nearly all malicious �ows to 2 of the 4
VIPs under a�acks but with only a few percent false negatives for
the other 2 VIPs, with near-zero false positives. Analysis of why
our approach works on whitelisted destination ports and protocols
and blacklisted source ports showed that our models learn correct
normality for destination ports and could relatively accurately de-
tect malicious �ows with incomplete normality for protocols and
source ports. Two key implications of our work are that we
can successfully train ML-based AD even with imperfect training
data, and that autoencoder-based AD and heuristic-based AD have
complementary strengths.

ACKNOWLEDGMENTS
We thank Yaguang Li from Google, Wenjing Wang from Microso�
and Carter Bullard from QoSient for their comments on this paper.

�is work was begun with the support of a summer internship
by Microso�.

Hang Guo and John Heidemann’s work in this paper is based
on research research sponsored by Air Force Research Laboratory
under agreement number FA8750-17-2-0280. �e U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

REFERENCES
[1] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 2012.
[2] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini. Anomaly

detection using autoencoders in high performance computing systems. CoRR,
abs/1811.05269, 2018.

[3] R. Chalapathy, A. K. Menon, and S. Chawla. Anomaly detection using one-class
neural networks. CoRR, abs/1802.06360, 2018.

[4] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoencoder
ensembles. In Proceedings of SIAM International Conference on Data Mining, 2017.

[5] Cynthia Wagner, Jérôme François, Radu State, and �omas Engel. Machine
learning approach for IP-�ow record anomaly detection. In Proceedings of IFIP
Networking Conference, 2011.

[6] R. Doshi, N. Apthorpe, and N. Feamster. Machine learning ddos detection for
consumer internet of things devices. CoRR, abs/1804.04159, 2018.

[7] C. Gates and C. Taylor. Challenging the anomaly detection paradigm: A provoca-
tive discussion. In Workshop on New Security Paradigms, 2007.

[8] GeeksforGeeks. One-hot encoding introduction. h�ps://www.geeksforgeeks.
org/ml-one-hot-encoding-of-datasets-in-python/.

[9] D. Hu, P. Hong, and Y. Chen. FADM: DDoS �ooding a�ack detection and
mitigation system in so�ware-de�ned networking. In IEEE GLOBECOM, 2017.

[10] L. Jun, C. N. Manikopoulos, J. Jorgenson, and J. L. Ucles. HIDE: a hierarchical
network intrusion detection system using statistical preprocessing and neural
network classi�cation. In Workshop on Information Assurance and Security, 2001.

[11] K. Kato and V. Klyuev. An intelligent ddos a�ack detection system using packet
analysis and support vector machine. Intelligent Computing Research, 2014.

[12] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao. PacketScore: A statistics-
based packet �ltering scheme against distributed denial-of-service a�acks. IEEE
Transactions on Dependable and Secure Computing, 2006.

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.
[14] M. L. Lab. DARPA/MIT dataset. h�ps://www.ll.mit.edu/r-d/datasets.
[15] X. Ma and Y. Chen. DDoS detection method based on chaos analysis of network

tra�c entropy. IEEE Communications Le�ers, 2014.
[16] D. Martens and F. Provost. Explaining data-driven document classi�cations. MIS

�arterly, 2014.
[17] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and

Y. Elovici. N-BaIoT—network-based detection of IoT botnet a�acks using deep
autoencoders. IEEE Pervasive Computing, 2018.

[18] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble of
autoencoders for online network intrusion detection, 2018.

[19] V. Nair and G. E. Hinton. Recti�ed linear units improve restricted boltzmann
machines. In International Conference on Machine Learning, 2010.

[20] T. D. Nguyen, S. Marchal, M. Mie�inen, M. H. Dang, N. Asokan, and A. Sadeghi.
DÏoT: A crowdsourced self-learning approach for detecting compromised IoT
devices. CoRR, abs/1804.07474, 2018.

[21] P. Oza and V. M. Patel. One-class convolutional neural network. CoRR,
abs/1901.08688, 2019.

[22] T. Peng, C. Leckie, and K. Ramamohanarao. Proactively detecting distributed
denial of service a�acks using source IP address monitoring. In International
Conference on Research in Networking, 2004.

[23] L. Portnoy. Intrusion detection with unlabeled data using clustering. �esis,
2010.

[24] PyTorch. PyTorch project front page. h�ps://pytorch.org.
[25] PyTorch. Weight decay for Adam. h�ps://pytorch.org/docs/stable/optim.html.
[26] Qosient. Argus- auditing network activity. h�ps://qosient.com/argus/.
[27] A. Saied, R. E. Overill, and T. Radzik. Arti�cial neural networks in the detection of

known and unknown DDoS a�acks: Proof-of-concept. In Highlights of Practical
Applications of Heterogeneous Multi-Agent Systems. �e PAAMS Collection, 2014.

[28] S. Seufert and D. O’Brien. Machine learning for automatic defence against
distributed denial of service a�acks. In IEEE ICC, 2007.

[29] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A deep learning approach to network
intrusion detection. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2018.

[30] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box:
Learning important features through propagating activation di�erences, 2016.

[31] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classi�cation models and saliency maps, 2013.

[32] C. Sinclair, L. Pierce, and S. Matzner. An application of machine learning to
network intrusion detection. In Proceedings of ACSAC, 1999.

[33] V. A. Siris and F. Papagalou. Application of anomaly detection algorithms for
detecting syn �ooding a�acks. In IEEE GLOBECOM, Nov 2004.

[34] R. Sommer and V. Paxson. Outside the closed world: On using machine learning
for network intrusion detection. In Proceedings of IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2010.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from over��ing. Journal of
Machine Learning Research, 2014.

[36] Stanford. CS231n. h�p://cs231n.github.io/.
[37] Stanford. DL tutr. h�p://u�dl.stanford.edu/tutorial/unsupervised/Autoencoders/.
[38] Taeshik Shon, Yongdae Kim, Cheolwon Lee, and Jongsub Moon. A machine

learning framework for network anomaly detection using svm and ga. In IEEE
SMC Information Assurance Workshop, 2005.

[39] Tao Peng, C. Leckie, and K. Ramamohanarao. Protection from distributed denial
of service a�acks using history-based ip �ltering. In IEEE ICC, 2003.

[40] D. S. Terzi, R. Terzi, and S. Sagiroglu. Big data analytics for network anomaly
detection from net�ow data. In UBMK, 2017.

[41] UCI. KDD cup dataset. h�ps://kdd.ics.uci.edu/databases/kddcup99/.
[42] S. Wachter, B. Mi�elstadt, and C. Russell. Counterfactual explanations without

opening the black box: Automated decisions and the gdpr, 2017.
[43] H. Wang, C. Jin, and K. G. Shin. Defense against spoofed ip tra�c using hop-count

�ltering. IEEE/ACM Transactions on Networking, 2007.
[44] I. H. Wi�en and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, 2005.
[45] J. Yu, H. Lee, M.-S. Kim, and D. Park. Tra�c �ooding a�ack detection with snmp

mib using svm. Computer Communications, 2008.
[46] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-

works, 2013.
[47] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural

network decisions: Prediction di�erence analysis, 2017.

12

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://pytorch.org
https://pytorch.org/docs/stable/optim.html
https://qosient.com/argus/
http://cs231n.github.io/
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

	Abstract
	1 Introduction
	2 Datasets and Methodology
	2.1 Cloud Platform Overview
	2.2 Cloud DDoS Data
	2.3 DDoS Detection Techniques
	2.4 Interpreting the Results of Detection

	3 Results
	3.1 Detection Accuracy on the Test Dataset
	3.2 Examining False Positives on Test Datasets
	3.3 Detection Accuracy On All Malicious Flows
	3.4 Interpreting Detection of Malicious Flows

	4 Implications
	4.1 Use Anomaly Detection to Its Strengths
	4.2 Noise-Free Data is Not Always Necessary
	4.3 Combine AD and Heuristic-Based Filters

	5 Related Work
	5.1 DDoS Study using ML-based AD
	5.2 DDoS Study using Other Techniques

	6 Conclusion
	References

