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Abstract. ICMP active probing is the center of many network mea-
surements. Rate limiting to ICMP traffic, if undetected, could distort
measurements and create false conclusions. To settle this concern, we
look systematically for ICMP rate limiting in the Internet. We create
FADER, a new algorithm that can identify rate limiting from user-side
traces with minimal new measurement traffic. We validate the accuracy
of FADER with many different network configurations in testbed exper-
iments and show that it almost always detects rate limiting. With this
confidence, we apply our algorithm to a random sample of the whole In-
ternet, showing that rate limiting exists but that for slow probing rates,
rate-limiting is very rare. For our random sample of 40,493 /24 blocks
(about 2% of the responsive space), we confirm 6 blocks (0.02%!) see
rate limiting at 0.39 packets/s per block. We look at higher rates in
public datasets and suggest that fall-off in responses as rates approach 1
packet/s per /24 block is consistent with rate limiting. We also show that
even very slow probing (0.0001 packet/s) can encounter rate limiting of
NACKs that are concentrated at a single router near the prober.

1 Introduction

Active probing with pings and traceroutes (both often using ICMP echo requests)
are often the first tool network operators turn to assess problems and are widely
used tools in network research. Studies of Internet address usage [10,4], path
performance [13], outages [15,19], carrier-grade NAT deployment [18], DHCP
churn [14] and topology [3,12] all depend on ICMP.

An ongoing concern about active probing is that network administrators rate
limit ICMP. Administrators may do traffic policing, limiting inbound ICMP,
and routers often rate-limit generation of ICMP error messages (ICMP types
3 and 11, called here ICMP NACKs). However recent work has emphasized
probing as quickly as possible. For IPv4 scanning, ISI Internet Censuses (2008)
send 1.5k probe/s [10], IRLscanner (2010) sends 22.1k probe/s [11], Trinocular
(2013) sends 20k probes/s [15], ZMap (2013) sends 1.44M probes/s [5], or 14M
probes/s in their latest revision [2], and Yarrp (2016) sends 100k probes/s or
more [3]. Interest in faster probing makes rate limit detection a necessary part
of measurement, since undetected rate limiting can silently distort results.

Although rate limiting is a concern to active probing, we know only two
prior studies that explicitly look for rate limiting in the general Internet [17,6].
Both of their mechanisms are expensive (requiring hundreds of vantage points
or server-side traffic of Google’s CDN) and neither of them look at rate limiting
to ICMP echo requests in forward path (§6). Unlike this prior work, we want to
study forward-path ICMP rate limiting in global scale without intensive traffic
probing or extensive sever-side data.



Our first contribution is to provide FADER (Frequent Alternation Availabil-
ity Difference ratE limit detector), a new lightweight algorithm to detect and
estimate forward-path ICMP rate limit across the Internet. Our approach works
from a single vantage point, and requires two scans at different rates, detecting
rate limits that take any value between those rates.

Our second contribution is to re-examine two existing public datasets for
signs of ICMP rate limiting in the whole Internet. First, we use random samples
of about 40k /24 blocks to show that ICMP Rate limiting is very rare in the
general Internet for rates up to 0.39 packets/s per /24: only about 1 in 10,000
/24 blocks are rate limited. Second, we look at higher rate scans (up to 0.97
packets/s per /24) and show the response fall-off in higher rates is consistent
with rate limiting from 0.28 to 0.97 packets/s per /24 in parts of the Internet.

Finally, although low-rate scans do not usually trigger rate limiting, we show
that rate limiting explains results for error replies when Internet censuses cover
non-routed address space.

2 Modeling Rate Limited Blocks

Our detection algorithm uses models of rate limiting in commercial routers.

2.1 Rate Limit Implementations in Commercial Routers

We examined Cisco and Juniper router manuals and two router models (Cisco
ME3600-A and Cisco 7204VXR); most routers implement ICMP rate limiting
with some variation on a token bucket.

With a token bucket, tokens accumulate in a “bucket” of size B tokens at
a rate of L tokens/s. When a packet arrives, it consumes one token and is for-
warded, or the packet is discarded if the token bucket is empty (assuming 1
token per packet). Ideally (assuming smooth traffic), for incoming traffic of P
packets/s, if P < L, the traffic is below rate limit and will be passed without
loss. When P > L, initially all packets will be passed as the bucket drains, then
packet loss and transmission will alternate as packets and tokens arrive and are
consumed. In the long run, when P > L, egress traffic exits at rate L packets/s.

We only model steady-state behavior of the token bucket because our active
probing (§4) lasts long enough (2 weeks, 1800 iterations) to avoid disturbance
from transient conditions.

2.2 Modeling Availability

We first model availability of a rate limited block—the fraction of IPs that re-
spond positively to probing. We consider both the true availability (A), ignoring

rate limiting, and also the observed availability (Â) affected by rate limiting.
Two observations help model availability. From §2.1, recall that L packet/s

pass when P packet/s enter token bucket. Therefore L/P is the proportion of
probes that pass. Second, if N IPs in target block are responsive, a non-rate-
limited ping hits a responsive IP with probability N/nB (nB represent number of
IP in a /24 block: 256). Combining above two observations gives us Equation 1.

A =
N

nB

and Â =

{
A(L/P ), if P > L

A, otherwise

(1)

R =
N

nB

P and R̂ =

{
R(L/P ), if P > L

R, otherwise

(2)



2.3 Modeling Response Rate

Response rate is the positive responses we receive from target block per second.
In our model (Equation 2), we consider both the true value (R), ignoring rate

limit, and the observed value (R̂), affected by rate limit.

2.4 Modeling Alternation Count

Response Alternation is defined as the transition of an address from responsive
to non-responsive or the other way around. Rate limits cause frequent alterna-
tion between periods of packet response and drops as the token bucket fills and
drains. Frequent alternation helps distinguish rate limiting from other sources of
packet loss such as networks outages (since outages are long-lived). Frequent al-
ternation is, however, less effective in distinguishing rate limiting from transient
network congestion because congestion losses are randomized and create fre-
quent alternation. An additional round of probing ensures the detection results
are robust against transient network congestion.

We model the count of observed response alternations, Ĉ, both accurately
and approximately. The accurate model (in our technical report [9] due to space)
fits measured values precisely but are not computable because our data has
r = 1800 iterations and the number of states scales as 2r. The approximate
model (Equation 3) provides single expression covering all r but fits only when
P � L (so that consecutive packets from same sender are never passed by token
bucket). We use it in our evaluation since it is feasible to solve when r = 1800.

Ĉ = 2(L/P )Nr, when P � L (3) L̂ =
nBÂHPH

N̂L

(4)

3 Detecting Rate Limited Blocks

The models (§2) assist our detection algorithm.

3.1 Input for Detection

Our detection algorithm requires low- and high-rate measurements as input.
Low-rate measurements must be slower than any rate limit that are detected.

Fortunately the routers we study have minimal values for rates, and we believe
our low-rate, at 0.0001 pings/s per block, is below that in most cases (§4.4
describes one exception). Low-rate captures the true availability (A) of target
blocks.

High-rate measurements must exceed the target rate limit. It sets the upper
bound for FADER’s detection range. In addition, high-rate measurements must
be repeated to use our alternation detection algorithm (Algorithm 1). Validation
in §5.1 shows that 6 repetitions is sufficient but our data include 1800 repetitions.

Both low- and high-rate measurements need to last a multiple of 24 hours to
account for regular diurnal variations in address usage [16].
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Algorithm 1: Frequent Alternation Test
Input:

Ĉ: observed response alternation count in fast scan

r: number of probing rounds in fast scan

N̂L: responsive IP count observed in slow scan

N̂H : responsive IP count observed in each round of

fast scan (where responsive IPs observed at ith round

is ˆNHi
)

Output:

Ofat: results of frequent alternation test

1: if Ĉ > (2N̂Lr)/Trej and NotDirTmpDn(N̂H, N̂L, r)

then

2: Ofat ← Passed // has freq alternations

3: else

4: Ofat ← Failed // no freq alternations

5: end if

6: function NotDirTmpDn(N̂H, N̂L, r)

7: for i = 1 to r do

8: if ˆNHi
≥ N̂L then

9: return false

10: end if

11: end for

12: return true

13: end function

Algorithm 2: FADER
Input:

ÂL/ÂH : measured block availability in slow/fast scan

N̂L: responsive IP count in slow scan

Trej : lower bound of RL-Rej phase

Ofat: result of frequent alternation test

Output:

Ofader : detection result of FADER

1: if ÂL = 0 or ÂH = 0 or N̂L < 10 then// blk down

2: Ofader ← Can-Not-Tell

3: else if (ÂL − ÂH )/ÂL > 0.1 then// significant Â

drop in faster probing

4: if ÂH/ÂL < 1/Trej then // in RL-Rej

5: Ofader ← Can-Not-Tell

6: else

7: if Ofat = Passed then

8: Ofader ← Rate-Limited

9: else // no freq alternations

10: Ofader ← Can-Not-Tell

11: end if

12: end if

13: else// no significant Â drop in faster probing

14: Ofader ← Not-Rate-Limited

15: end if

3.2 Four Phases of ICMP Rate Limiting

The models from §2 allow us to classify the effects of ICMP rate limiting into
four phases (Figure 1). These phases guide our detection algorithm:

1. Non-RL (P < L): before rate limiting takes effect,

2. RL-Tran (L < P < 1.1L): rate limiting begins to reduce Â with alternating
responses.

3. RL-Sat (1.1L < P < 100L): significant Â drop and frequent alternation.

4. RL-Rej (P > TrejL, Trej = 100): most packets are dropped (Â < 0.01N/nB)
and response alternations are rare.

These phases also identify regions where no algorithm can work: rate limits
right at the probing rate (RL-Tran phase, due to not enough change in re-
sponse), or far above it (RL-Rej phase, because the block appears completely
non-responsive, giving little information). We use empirical thresholds 1.1L and
100L to define these two cases.

In §5.2 we show that our algorithm is correct in the remaining large regions
(Non-RL and RL-Sat), provided P < 60L.



3.3 Detecting Rate Limited Blocks

FADER is inspired by observations that the RL-Tran phase is narrow, but we can
can easily tell the difference between the Non-RL and RL-Sat phases. Instead
of trying to probe at many rates, we probe at a slow and fast rate, with the
hope that the slow probes observe the Non-RL phase and the high-rate brackets
the RL-Tran phase. If the target block shows much higher availability in slow
probing, we consider the block a rate limit candidate and check its traffic pattern
for signs of rate limiting: consistent and randomized packet dropping and passing.

We first introduce Frequent Alternation Test (Algorithm 1). This subroutine
identifies the consistent and randomized packet dropping caused by rate limiting
(by looking for large number of responses alternations).

Threshold (2N̂Lr)/Trej is derived from our approximate alternation count
model (Equation 3). As low-rate measurement is assumed non-rate-limited, we

have N̂L (responsive IPs count in low-rate measurement) = N (responsive IP
count when non-rate-limited). Recall we give up detection in RL-Rej phase
(§3.2), we have P < TrejL. Substituting both into alternation count model, for

a rate limited block, there must be at least (2N̂Lr)/Trej response alternations.
Function NotDirTmpDn filters out diurnal and temporarily down blocks,

which otherwise may become false positives because their addresses also alternate
between responsive and non-responsive. NotDirTmpDn checks if any round of
the high-rate measurement looks like the daytime (active period) of diurnal block

or the up-time of temporarily down blocks, satisfying N̂Hi
≥ N̂L.

Next, we describe our detection algorithm FADER (Algorithm 2). FADER
detects if target block is rate-limited, producing “cannot tell” for blocks that are
non-responsive or respond too little. No active measurement system can judge
the status of non-responsive blocks; mark such block as cannot-tell rather than
misclassifying them as rate limited or not.

In our experiments we see cannot-tell rates of 65% when P = 100L and in
average only 2.56 IPs respond in each target block (§5.2); these rates reflect the
fundamental limit of any active probing algorithm rather than a limit specific
to our algorithm.

Threshold N̂L < 10 used in line 1 is empirical, but chosen because very sparse
blocks provide too little information. Test (ÂL−ÂH)/ÂL > 0.1 (line 3) is derived
by substituting P > 1.1L, the lower bound of RL-Sat phase (where we start to

detect rate limit), into availability model (Equation 1). Test ÂH/ÂL < 1/Trej

(line 4) is derived by substituting P > TrejL (RL-Rej phase, where we give up
detection), into availability model (Equation 1).

Once a target block is detected as rate limited, we estimate its rate limit
(L̂) by Equation 4 which is derived by inverting our availability model (§2.2).
(We estimates the effective rate limit at each target /24 block, or the aggregate
rate limit of intermediate routers across their covered space. We do not try to
differentiate between individual hosts in a /24 block because two scans provide
too few information about host).

4 Results: Rate Limiting in the Wild

We next apply FADER to existing public Internet scan datasets to learn about
ICMP rate limiting in the Internet. (We validate the algorithm later in §5.)



Start Date (Duration) Size (/24 blocks) Alias Full Name

2016-08-03 (32 days) 14,460,160 it71w census internet_address_census_it71w-20160803

2016-08-03 (14 days) 40,493 it71w survey internet_address_survey_reprobing_it71w-20160803

2016-06-02 (32 days) 14,476,544 it70w census internet_address_census_it70w-20160602

2016-06-02 (14 days) 40,493 it70w survey internet_address_survey_reprobing_it70w-20160602

Table 1: Datasets Used in This Paper

blocks studied 40,493 (100%)

not-rate limited 24,414 (60%)

cannot tell 15,941 (39%)

rate limited 111 (0.27%) (100%)

false positives 105 (0.25%) (95%)

true positives 6 (0.015%) (5%)

Table 2: it71w Detection Results

Number of Blocks (Ratio)

Test Name Input Passed Filtered

Availability Diff 40,403 2,088 (5.2%) 38,315 (94.8%)

Freq Alternation 2,088 111 (5.3%) 1,977 (94.7%)

Re-probing 111 5 (4.5%) 106 (95.5%)

Table 3: Effects of Each FADER Step

4.1 How Many Blocks are Rate Limited in the Internet?

We first apply FADER to find rate limited blocks in the Internet, confirming
what we find with additional probing.

Input data: We use existing Internet censuses and surveys as test data [10].
Reusing existing data places less stress on other networks and allows us to con-
firm our results at different times (§4.2). Table 1 lists the public datasets we
use [8].

Censuses (0.0001 pings/s per block) and surveys (0.39 pings/s per block)
define the low- and high-rates that bound rate limits detected by our algorithm.
We could re-run FADER with higher rates to test other upper bounds; we report
on existing higher rate scans in §4.3.

Surveys probe about 40k blocks about 1800 times over two weeks, support-
ing frequent alternation detection. Censuses cover almost the entire unicast IPv4
Internet, but we use only the part that overlaps the survey. With a 2% of the
responsive IPv4 address space, randomly chosen, our data provides a represen-
tative of the Internet.

Initial Results: Here we apply FADER to it71w, the latest census and sur-
vey datasets, in Table 2. We find that most blocks are not rate limited (60%),
while a good number (39%) are “cannot tell”, usually because they are barely
responsive and provide little information for detection (without additional in-
formation, no one could tell if these blocks are rate limited or not). However, our
algorithm classifies a few blocks (111 blocks, 0.27%) as apparently rate limited.

Validation with additional probing: To confirm our results, we next re-
examine these likely rate-limited blocks, We re-probe each block, varying probing
rates from 0.01 to 20 ping/s per block to confirm the actual rate limiting. Our
additional probing is relatively soon (one month) after our overall scan.

Figure 4 shows this confirmation process for one example block. Others are
similar. In this graph, red squares show modeled availability assuming the block
is rate limited (given the rate limit estimation from FADER in Table 4). The
green line with diamonds shows the availability if the block is not rate limited.
As Figure 4 shows, this block’s measured availability (blue dots) tightly matches
the modeled value with rate limiting while diverging from values without rate
limiting. We also apply similar confirmation process to this block’s measured
response rate (omitted, but details in our technical report [9]). These data show
that this block, 182.237.200.0/24, is rate limited.



Response Rate Availability Rate Limit (ping/s per blk)

/24 Block (measured, pkts/s) (ÂL, %) (measured) (estimated)

124.46.219.0 0.009 9.77 0.09 0.09

124.46.239.0 0.08 53.13 0.15 0.12

182.237.200.0 0.06 58.98 0.10 0.12

182.237.212.0 0.04 27.34 0.15 0.10

182.237.217.0 0.06 49.61 0.12 0.13

202.120.61.0 0.35 17.58 1.99 0.32

Table 4: True Rate Limited Blocks in it71w Census and Survey.
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Fig. 5: FADER Validation: with Packet Loss

Although this example shows a positive confirmation, we find that most of
the 111 blocks are false positives (their availabilities and response rates in re-
probing do not match rate limit models). Only the 6 blocks listed in Table 4
are indeed rate limited. We design our algorithm to favor false positives for
two reasons. First, favoring false positives (by using necessary conditions as
detection signals) avoids missing rate-limited blocks (false negatives). Second,
this trade-off (favoring false positives over false negatives) is required to confirm
the near-absence of rate limiting we observe. We rule out the possibility that
these false positives are caused by concurrent high-rate ICMP activities at our
target blocks by observing over long duration and at different times (§4.2).

We use additional verification to confirm true positives. Among the 6 rate
limited blocks, 5 belong to the same ISP: Keumgang Cable Network in South
Korea, while the last block is from Shanghai Jiaotong University in China. We
have contacted both ISPs to confirm our findings, but they did not reply.

Our first conclusion from this result is there are ICMP rate-limited blocks,
but they are very rare. We find only 6 blocks in 40k, less than 0.02%. Thus it is
almost always safe to probe in this range (up to 0.39 packets/s per block).

Second, we see that each of FADER’s steps rule out about 95% of all the
blocks entering that rule (as in Table 3). However, even after two phases of
filtering, there is still a fairly high false positive rate in the remaining blocks,
since only 6 of 111 (5.4%) are finally confirmed as rate limited.

Finally, we show that when we detect rate limiting, our estimate of the rate
limit are correct in general. Table 4 shows this accuracy: five out of six rate limits
observed in re-probing (which is estimated by measuring R̂ , ÂL and inverting
our response-rate model Equation 2) closely match FADER’s estimates.

However our rate limit estimation (0.32 ping/s per block) for block 202.120.61/24
is 5 times smaller than the rate limit (1.99 pings/s per block) observed in re-
probing. When we review the raw data, we believe the rate limit for this block
changed between our measurements.



4.2 Verifying Results Hold Over Time

To verify our approach works on other datasets, we also apply FADER to it70w
census and survey data. This data is taken two months before it71w and sharing
76% of the same target blocks. Detection results of it70w data agrees with our
previous conclusion, resulting in about the same number of blocks identified as
rate limited (0.3%, 138 of 40,493), and the same fraction as actually limited
(0.012%, 5). Of blocks that we confirm as rate limited after re-probing, four also
are detected and confirmed in it71w. The fifth, 213.103.246.0/24, is from ISP
Swipnet of Republic of Lithuania and is not probed in it71w.

We observe inconsistencies between it70w and it71w for two blocks: 124.46.219.0/24
and 202.120.61.0/24 (detected as rate-limited in it71w, but as Can-Not-Tell and
Not-Rate-Limited respectively in it70w) We believe the former block is hard
to measure: with only 25 (9.8%) responsive addresses, and the latter actually
changed its use between the measurements (supporting details in our technical
report [9]).

4.3 Is Faster Probing Rate Limited?

Having shown that rate-limited blocks are very rare up to 0.39 packets/s, we
next evaluate if faster probing shows signs of rate limiting, as advocated by
ZMap [2] and Yarrp [3].

We study Zippier ZMap’s 50-second TCP-SYN probing datasets (private
dataset obtained from the authors [1], the public ZMap datasets are lower rates),
from 0.1M to 14M packet/s, which we estimate as 0.007 to 0.97 packets/s per
/24 block. We show rate limiting could explain the response drop-off at higher
rates. Although both our models and FADER are originally designed for ICMP
rate limiting, they also detect TCP-SYN rate limiting because they detect the
actions of the underlying token bucket.

ZMap performs a series of 50-second experiments from 0.1M to 14M pack-
ets/s [2]. Each experiment targets a different random sample of a 3.7 billion IP
pool. Their results show overall availability (the fraction of positive responses of
all hosts that are probed) is roughly stable up to 4M packets/s. However, when
probing rates exceed 4M packets/s, the availability starts to decline linearly (the
blue dots in Figure 6, from their paper [2]). They state that they do not know
the exact reason for this decline.

We believe rate limiting explains this drop—once rate limits are exceeded,
as the packet rate increases, availability drops. We also believe that there are
roughly the same amount of rate limiting at each packet rate between 4M and
14M packets/s in the Internet, causing the overall availability drop to be linear.

We would like to apply FADER directly to Zippier ZMap’s 50-second probing
results. Unfortunately we cannot because the target IPs are not known for each
run (they do not preserve the seed, so we do not know addresses that do not
respond), and they do not repeat addresses, so we cannot test response alter-
nation. (We chose not to collect new, high-rate ZMap data to avoid stressing
target networks.) However, we can statistically estimate how many addresses do
no not respond, allowing us to evaluate rate-limiting for high-rate scans (up to
14M packets/s).

We create a model of their measurement process and show rate limiting
can explain their drops in response rate. Full details of this model are in our



technical report [9]. We show availability of many ZMap target blocks matches
our expectation of rate limiting by statistically estimating the number of IPs
probed in each target block.

Potential Limiting at High Probe Rates: Figure 6 compares our model
of ZMap measurement process (the red squares) against reported Zippier ZMap
experiments (blue circles). Observing that rate limits are consistent with the
drops in response of ZMap at high speeds, we next apply FADER (without the
frequent alternation test) to ZMap data, looking for blocks that appear to be
rate limited.

We statistically estimate the number of IPs probed in each block. Recall each
50-second scan send pseudo-random probes into the same 3.7 billion IPv4 pool,
assuming uniform sampling, about same number of IP will be sampled from each
/16 block in the pool. (Here we look at /16 blocks instead of /24 blocks because
larger blocks decrease the statistical variance.) As a consequence, for a 50-second
ZMap scan of P packets/s, approximately 50P/(3.7× 109)× 216 IPs are probed
in each /16 block, given 50P/(3.7 × 109) as the fraction of addresses probed in
50s, against a target 216 addresses in size. We then estimate availability of each
/16 block as the fraction of target IPs that respond positively to probes.

We next apply FADER to detect rate limiting (assuming all blocks pass
Frequent Alternation Tests). For each ZMap target block, we use slowest 50-
second scan (0.1M packets/s) as the low-rate measurement and test each of the
other 15 faster scans as high-rate measurement. This gives us 15 test results
(each at a different high rate), for each target block. We consider a block as
potentially rate limited if it is detected as rate limited in at least one test. We
do not consider the other blocks (cannot tell or not-rate limited) further.

Table 6 shows detection results. Most ZMap target blocks (53,149 blocks,
93.99%) are cannot tell in all 15 FADER tests (43,067 of them due to target
block went dark during low-rate measurement and provide no information for
detection). A good number of them (3,090 blocks, 5.46%) are classified as rate-
limited in at least one FADER test and are considered potentially rate-limited.
It is worth noting that most (69.68%) of these potentially rate-limited blocks
are consistently classified as rate-limited in most FADER tests (at least 13 out
of 16 tests), supporting our claim that those blocks are potentially rate-limited.

Since we omit Frequent Alternation Tests and our algorithm is optimized
to avoid false negatives, we know many of these potential rate limited blocks
may be false positives. To further filter out false detection,we manually check a
565 (1%) random sample of 56,500 ZMap target blocks. Of these sample blocks,
31 are detected as rate-limited in at least one FADER test and are considered
potentially rate-limited.

We find the other 534 blocks (cannot tell or not-rate limited) to be true

negative. They either have almost zero ÂL or ÂH (providing no information
for detection) or become more available at higher probing rate (opposing our
expectation of reduced availability at faster scan)

All 31 potential rate-limited blocks show reduced availability at higher prob-
ing rates (regardless of jitters caused by probing noises and distortions intro-
duced by our statistical estimation), matching our expectation of rate limited
blocks. We also find 7 of them appear to have more than one rate limits. For
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Table 5: 2 ZMap Blocks Showing Multiple Rate
Limits

blocks studied 56,550 (100%)

0 rate limited 53,460 (94.54%)

≥ 1 rate limited 3,090 (5.46%) (100%)

≥ 13 rate limited 2,153 (3.81%) (69.68%)

< 13 rate limited 937 (1.66%) (30.32%)

Table 6: Applying 15 FADER
Tests to ZMap /16 Blocks

example, block 125.182/16 in 5a looks like a superposition of Â curves of two

rate limits: one at 0.5M packets/s, the other at 4M packets/s (recall the ideal Â
curve of rate limited block in Figure 1). Block 50.62/16 in 5b, on the other hand,
show nearly linear drops in availability as probing rates get higher, suggesting it
consists of multiple rate limits (reasons are similar as in our modeling of ZMap
experiments). We manually check each /24 blocks in those two /16 blocks, and it
appears that those /24 blocks indeed have multiple rate limits. This observation
supports our claim that different parts of the /16 have different rate limits.

4.4 Rate Limiting of Response Errors at Nearby Routers

Having shown that probing rates up to 0.39 pings/s trigger rate limits on almost
no target blocks, we also observe a case where even slow probing (0.0001 ping/s
per block) can trigger rate limits in reverse path because traffic to many targets
is aggregated at a nearby router. Our technical report gives details of this case [9].

5 Validation

We validate our model against real-world routers and our testbed, and our al-
gorithm with testbed experiments. (We also tried to contact two ISPs about
ground truth, but we got no response §4.1)

5.1 Does the Model Match Real-World Implementations?

We next validate our models for availability, response alternation, and response
rate of rate-limited blocks. We show they match the ICMP rate limiting imple-
mentations in two carrier-grade, commercial routers and our testbed.

Our experiments use two commercial routers (Cisco ME3600-A and Cisco
7204VXR) and one Linux box loaded with Linux filter iptables as rate limiters.
Our measurement target is a fully responsive /16 block, simulated by one Linux
box loaded with our customized Linux kernel [7]. In each experiment, we run a
6-round active ICMP probing, with the rate changing from below the limit to
at most 7500× the rate limit (while fixing rate limit).

We begin with validating our availability model from Equation 1. Figure 2
shows model predicted availability (red line with squares) closely matches router
experiments (blue line with circles) and testbed experiments (blue line with dots)
from below to above the rate limit.

We validate our response rate model from Equation 2. We omit this data due
to space limitations, but our response rate model is accurate from a response
rate of 0.01 to 90× the rate limit.
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Fig. 7: FADER Validation: with Partially Re-
sponsive Target Blocks

We next validate our models of alternation counts (Equation 3) with testbed
experiments. Figure 3 shows our precise model (red square) fits perfectly from
below the rate limit up to 7500× the rate limit while our approximate model
(green diamond) fits when P � L (in our case when P > 10L).

We are unable to validate alternation count model with commercial routers;
the routers are only available for a limited time. But we believe testbed vali-
dations shows the correctness of our alternation counts models since we have
already shown rate limiting in testbed matches that of two commercial routers.

5.2 Correctness in Noise-Free Testbed

We next test the correctness of FADER in a testbed without noise (supporting
graphs in our technical reports [9]). For noise-free experiment, we run high-
rate probing from 1.6L to 240L stressing FADER beyond its designed detecting
range P < 60L. FADER detection is perfect for P < 60L. However, as we
exceed FADER’s design limit (60L), it starts marking blocks as can-not-tell.
The fraction of can-not-tell rises as P grows from 60L to 144L (when P = 100L,
65% blocks are marked as can-not-tell). Fortunately, even when the design limit
is exceeded, FADER is never incorrect (it never gives a false positive or false
negative), it just refuses to answer (returning can-not-tell).

In addition to detecting rate limiting, FADER gives an estimate of what that
rate limit is. Varying P from L to 144L, FADER’s rate limit estimate is within
7% (from −4.2% to +6.9%) when P < 60L, and it drops gradually as the design
limit is exceed.

5.3 Correctness in the Face of Packet Loss

We next consider FADER with packet loss which could be confused with loss
due to rate limiting. We vary the amount of random packet loss from 0 to 60%.

Figure 5a shows FADER’s detection as packet loss increases. There is almost
no misdetection until probe rates become very high. At the design limit of P =
60L, we see only about 4% of trials are reported as cannot tell.

While ability to detect is insensitive to noise, our estimate of the rate limit
is somewhat less robust. Figure 5b shows that packet loss affects our estimate
of the value of the rate limit (here we fix P = 26L, but we see similar results for
other probe rates). Error in our rate limit is about equal to the dropping rate
(at 20% loss rates, the median estimate of rate limit is 20.72% high).



5.4 Correctness with Partially Responsive Blocks

We next consider what happens when blocks are only partially responsive. Par-
tially responsive blocks are more difficult for FADER because probes sent to non-
responsive addresses are dropped, reducing the signal induced by rate limiting.
Here we vary probe rate for different density blocks. (We hold other parameters
fixed and so do not add packet loss.)

In Figure 7a we vary the relative probing rate and plot separate lines for each
level of block responsiveness. In general, the number of can-not-tell increase as
block responsiveness falls, but only when the probe rate is also much greater
than the rate limit. In the worst case, with only 10% of IPs responding at a
probe rate 60× the rate limit, 35% of tries report can-not-tell and no wrong
answer is given.

Figure 7b shows the rate limit output by FADER as the block density
changes. We show median and quartiles with box plots, and minimum and max-
imum with whiskers. The median stays at the true value, but the variance in-
creases, as shown by generally wider boxes and whiskers. Here P = 26L; we see
similar results at other probing rates.

6 Related Work

Two other groups have studied detecting rate limits in the Internet.
Work from Universite Nice Sophia Antipolis studies rate limiting for tracer-

outes [17]. Specifically, they study ICMP, Type 11, Time exceeded replies on
reverse paths. They detect rate limits by sending TTL-limited ICMP echo re-
quests from 180 vantage points, varying the probing rate from 1 to 4000 ping/s
and looking for constant response rates as a sign of rate limits. They studied
850 routers and found 60% to do rate limiting. Our work has several important
differences. The overall result is quite different: they find 60% of reverse paths
are rate limited in 850 routers, measured up to 4000 ping/s, while we find only
0.02% of forward paths are rate limited in 40k /24 blocks, measured up to 0.39
pings/s per /24.

We believe that both their results and ours are correct. Many routers have
reverse-path rate limiting on by default, consistent with their results. Our ap-
proach provides much broader coverage and generates less additional traffic by
reusing existing data. Our work uses different signals (availability difference and
frequent alternation) for detection. Finally, we focus on forward path, so our re-
sults apply to address allocation information, while they focus on reverse path,
with results that apply to fast traceroutes.

Google recently examined traffic policing, particularly in video traffic [6].
Their analysis uses sampled measurement from hundreds of Google CDNs to
millions of users of YouTube. They provide a thorough analysis on the prevalence
of policing and the interaction between policing and TCP. They also provide
suggestions to both ISP and content providers on how to mitigate negative effect
of traffic policing on user experience. Their focus on TCP differs from ours
on ICMP rate-limiting. Their coverage is far greater than ours, although that
coverage is only possible because Google is a major content provider. They find
fairly widespread rate limiting of TCP traffic, but their subject (TCP video) is
much faster than ours (ICMP) that such differences in results are not surprising.



7 Conclusion

Undetected rate limiting can silently distort network measurement and bias re-
search results. We have developed FADER, a new, light-weight method to de-
tect ICMP rate limiting. We validated FADER against commercial routers and
through sensitivity experiments in a testbed, showing it is very accurate at de-
tecting rate limits when probe traffic is between 1 and 60× the rate limit.

We applied FADER to a large sample of the Internet (40k blocks) on two
separate dates. We find that only a tiny fraction (0.02%) of Internet blocks are
ICMP rate limited up to 0.39 pings/s per /24. We also examined public high-rate
datasets (up to 1 ping/s per /24) and showed their probing results are consistent
with rate limitings. We only see significant rate limiting on reverse path when
routers near the prober see a large amount of traffic. We conclude that low-rate
ICMP measurement (up to 0.39 ping/s per block) are unlikely to be distorted
while high-rate measurement (up to 1 ping/s per block) risks being rate limited.
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