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Abstract—Many IP Geolocation services and applications as-
sume that all IP addresses within the same /24 IPv4 prefix (a
/24 block) reside in close physical proximity. For blocks that
contain addresses in very different locations (such as blocks
identifying network backbones), this assumption can result in
a large geolocation error. In this paper we evaluate the co-
location assumption. We first develop and validate a hierarchical
clustering method to find clusters of IP addresses with similar
observed delay measurements within /24 blocks. We validate our
methodology against two ground-truth datasets, confirming that
93% of the identified multi-cluster blocks are true positives with
multiple physical locations and an upper bound for false positives
of only about 5.4%. We then apply our methodology to a large
dataset of 1.41M /24 blocks extracted from a delay-measurement
study of the entire responsive IPv4 address space. We find that
about 247K (17%) out of 1.41M blocks are not co-located, thus
quantifying the error in the /24 block co-location assumption.

I. INTRODUCTION

Internet location-aware applications and research in geolo-
cation benefit from IP-to-geolocation provided by services
such as MaxMind [4], IP2Location [3], and DB-IP [1]. These
services provide various degrees of geolocation accuracy.
While the accuracy has improved over the last decade [21],
[20], [14], accurate (city or street level) IP-geolocation is still
regarded as an open problem. Achieving good accuracy can
be difficult when some blocks of adjacent IP addresses span
large geographic areas [18], [10]. Today, most services assume
that the addresses within the same /24 prefix (a /24 block) are
geographically proximate—the block co-locality assumption.
When this assumption is violated, some addresses in the block
will have poor geolocation accuracy.

Public databases such as MaxMind GeoLiteCity [4] and
IP2Location LITE-DB11 [3] assume block co-locality. The
entries in these databases identify IP blocks of various sizes
and assign each a specific location. MaxMind’s database con-
tains about 1.7M such blocks covering 3.6B addresses (97%
of the allocated address space). The IP2Location database
has 2.2M entries covering the entire IPv4 address space (no
locations are assigned to special blocks such as multicast). In
these databases nearly all blocks are /24 or larger, thus 99%
or more of the /24 blocks are marked as co-located. Some
location-aware applications also seem to adhere to the /24
co-locality assumption. An architecture proposed by Chen et
al. [7] maps a client’s request to a proximal content server
based on prefixes, meaning that all clients within the same
prefix are mapped to the same content server. They suggest

the mapping at /20 prefix granularity to minimize the number
of required mappings.

In this paper we assess the /24 block co-locality assumption.
We leverage a large subset of the dataset collected by Hu et
al. [13] and publicly available [6]. The dataset contains round-
trip estimates for every responsive address in the IPv4 address
space measured from several vantage points (VPs). We assess
blocks co-locality in this dataset based on the observation
that geographically co-located hosts will show similar network
delays when probed by the same set of VPs [16]. Based on this
observation, we cluster addresses in each /24 block into groups
by similarity of the delay measurements from multiple VPs.
We then identify /24 blocks with multiple clusters and show
that these clusters violate the block co-locality assumption and
likely contain addresses in distinct locations.

Our first contribution is to introduce and evaluate a method-
ology to assess co-locality of endpoints in an IP block. In this
paper we limit our study to /24 blocks, but our methodol-
ogy is independent of block size. Our delay-based clustering
algorithm automatically identifies blocks that appear to have
endpoints at different locations. We validate the accuracy of
this method against two ground truth datasets (Section IV):
first, a set of /24 blocks that we have selected based on our
belief that they are co-located, and second, an artificially-
constructed set of multi-location blocks. We confirm that 93%
of the blocks identified as multi-location blocks in the ground
truth datasets are true positives. Our second contribution is the
application of this methodology to analyze 1.41M /24 blocks
(118M addresses), a large part of the Internet. We find that
a noticeable fraction of these blocks (17%, or 247K blocks)
appear to have endpoints at multiple locations.

II. DATASET DESCRIPTION

Our analysis uses the IP geolocation dataset collected by re-
searchers at ISI [6] extended from prior work by Hu et al. [13].
The original dataset contains round-trip time measurements
for all the allocated and responsive IP addresses in the IPv4
address space. The dataset has about 472M IP addresses in
just under 3.5M /24 blocks and was collected from Feb. 2012
to Mar. 2013. RTTs were measured from about 670 vantage
points (VPs) on PlanetLab. The work used the following
algorithm to pick the 10 closest VPs to any /24 block. First,
all available VPs were used to probe a few representative IP
addresses in a block. The 10 VPs with shortest RTTs were
selected to probe all IP addresses in that block. The use of



VPs close to the target minimizes interference from congestion
and maximizes the precision of geolocation (something 400
milliseconds away can be anywhere on earth, but something
within few milliseconds is likely in the same city). Also to
reduce congestion noise, latency was reported as the minimum
of 10 measurements. For our work, we used the raw probing
data for all /24 blocks where each block contained at least
10 IP addresses that responded to all VPs probes. The delay
measurements of each IP address are treated as its coordinates
in a multidimensional space. Our dataset comprises of 118.5M
IP addresses in 1.41M /24 blocks.

III. METHODOLOGY

A. Identifying Multi-Location Blocks

Our methodology is based on the insight that geographi-
cally co-located IP addresses from the same IP block exhibit
relatively similar network delays when probed from the same
vantage points (VPs). For each IP address we create a vector
of 10 delay measurements observed from 10 different VPs
(Section II). In order to identify groups of likely co-located
IP addresses we formulate the problem as finding similar IP
addresses in a multidimensional space of delay coordinates.
Co-located IP addresses are expected to have small distances
between them in the delay multidimensional space. So we
cluster IP addresses in a block based on the similarity of their
delay vectors. A block with all of its IP addresses mapped into
one cluster is likely a single-location block, while a block with
2 or more clusters is likely a multi-location block.

To identify clusters of co-located IP addresses in a block we
use an agglomerative hierarchical clustering algorithm from R
cluster package called agnes. Given the delay vectors of the
IP addresses in a block, the algorithm generates a hierarchical
structure (dendrogram) based on the dissimilarities of the delay
vectors. We use the Standardized Euclidean distance metric
to measure dissimilarities. We use a dynamic tree cut method
from the dynamicTreeCut package [15] to identify the clusters
in the dendrogram. The combination of the these methods
satisfies the need to identify clusters automatically without a
prior knowledge of their number or size.

As with other agglomerative hierarchical methods, the agnes
method generates a bottom-up hierarchical structure for the
input observations. Each observation starts as a cluster by
itself. In each subsequent step the closest two clusters not
already in the same cluster are merged into one larger cluster.
The process continues until there is only one cluster of all
observations. The height at which two clusters are merged in
the tree-like dendrogram structure is computed as a function
of the dissimilarity between the two merged clusters. The
dissimilarity between two clusters can be computed in different
ways. In this work we use the average linkage method, which
computes the distance between two clusters as the average of
pairwise dissimilarities between the objects in the two clusters.
For two clusters, say cluster A with na objects and cluster B
with nb objects, the metric is computed using Equation 1,
where D is the distance metric used to compute the distance
between two objects. We use the Standardized Euclidean

distance metric to balance the depth of the measurements
observed from VPs at different distances from targets.

daverage(A,B) =
1

nanb

na∑
i=1

nb∑
j=1

D(IPAi, IPBj) (1)

Prior work has shown the need for selecting clustering
thresholds dynamically when examining Internet RTT data [9].
To identify clusters automatically for each of our 1.41M /24
blocks, we use the “Dynamic Hybrid” tree cut method [15] to
dynamically identify clusters in a dendrogram. This method
uses dendrogram-merging information to build the clusters
in a bottom-up fashion. We tuned the method parameters to
be conservative on what is considered a cluster. Many of
the parameters are set as a fraction of the joining heights
of the branches in the dendrogram. The one parameter we
found most effective is the minimum gap parameter, which
specifies the minimum joining height to allow two clusters
to be merged. Higher settings of this parameter allow more
clusters to be merged. The result is fewer clusters with
significant dissimilarities indicating higher probability of being
at different locations. We also set the minimum cluster size
to 10 to reduce the possibility of getting small clusters of
outliers. We evaluate the clustering method using two ground
truth datasets in Section IV.

B. Methodology Limitations

Our methodology has the following limitations. First, as
with all delay-based methods, our approach can be affected
by measurement inaccuracy. This problem is alleviated by
taking multiple measurements over time, the use of multiple
VPs per block and picking the minimum RTT. Second, our
methodology does not identify the geographic locations of the
clusters and the actual distance between them. Fortunately,
geographical locations are not required to determine if two IP
addresses are co-located as we propose in our methodology.

IV. VALIDATING IDENTIFICATION OF MULTI-LOCATION
BLOCKS

In this section we validate our methodology by showing
that it accurately finds single- and multi-location blocks in
our ground-truth dataset. We build our ground truth dataset as
follows. First, we identify single-location blocks as described
in Section IV-A. Second, we use this data to construct a multi-
location ground truth dataset as described in Section IV-B.
Third, we use the constructed ground truth dataset to validate
our methodology as described in Section IV-C. Finally, we
estimate an upper bound of false positives for the clustering
method as described in Section IV-D.

A. Building a Single-Location Ground Truth Dataset

We build a dataset of /24 blocks that we strongly believe
are single-location blocks for two purposes: (a) to evaluate the
clustering method accuracy on single-location blocks, (b) to
build the multi-location ground truth dataset.



Our single-location ground truth dataset is composed of
address blocks belonging to selected academic institutions. We
opted for academic institutions because they typically have
specific, well-defined physical locations with many end-user
computers within a small geographical area. Such institutions
often host their own web services [20]. Academic institutions
are also relatively easy to find on the map and services such
as Google Maps already have campus outlines and geographic
coordinates for them. Finally, academic institutions tend to
be long-lived with more accurate whois entries than average.
These properties make academic blocks attractive candidates
for our purposes.

We begin by identifying the locations and /24 IP address
blocks containing the websites of 4650 universities from
different locations around the world listed at [5]. We verify that
these blocks are locally hosted at their universities by applying
two filters. First, we detect outsourcing using whois informa-
tion and discard outsourced blocks. We identify outsourcing
by matching the OrgName field from whois information with
the institution name. For example, Duke University’s website
is at the IP address (54.191.241.8), which the whois OrgName
identifies as Amazon Technologies Inc, this shows evidence of
outsourcing and is therefore removed from our list. Second,
we use the Google Maps Geocoding API [2] to identify a
university’s physical location (latitude/longitude), and compare
this to the physical location assigned to the IP address by
MaxMind. We discarded IP addresses where the great circle
geographic distance between these geographic locations is
more than 10 miles. This step discarded blocks that are located
to differing or uncertain locations. The filters described above
are very strict and resulted in rejecting otherwise viable entries
in our dataset. However, this only increased the confidence of
the remaining entries since they passed a higher bar. Finally,
we cross-checked the remaining blocks from the university
dataset with the one we extracted from the 1.41M blocks and
formed our single-location dataset from blocks that appear in
both.

This aggressive filtering reduced our initial set of 4650
academic institutions to 85, but resulted in a high-confidence,
single-location ground truth dataset of 85 /24 address blocks.
We used this dataset to build a multi-location ground truth
dataset as described next.

B. Building a Multi-Location Ground-Truth Dataset

We built a multi-location ground truth dataset by combining
two single-location blocks to form synthetic multi-location
blocks. To generate synthetic multi-location blocks we find
all blocks from the single-location dataset that were probed by
the same set of VPs; we call these VP-compatible blocks. We
then computed all two-block combinations in each set of VP-
compatible blocks, combining all measurement data from the
two blocks to create a new synthetic block. Merged blocks may
have up to 512 addresses; however, since we had data from
ping-responsive addresses only, merged blocks almost always
had fewer addresses, often less than 256. These synthetic
blocks form our ground truth multi-location blocks dataset.

Some of our VP-compatible single-location blocks that we
use to build the multi-location dataset are actually quite close
to each other. We therefore identify two subsets in our multi-
location dataset: those composed of almost-co-located blocks
(within 10 miles of each other), and not-co-located blocks
(22 miles apart or more). We identify 21 almost-co-located
synthetic blocks and 99 not-co-located blocks.

C. Validation

The two ground truth datasets (single- and multi-location)
let us evaluate the ability of our delay-based clustering method
to identify co-located blocks and blocks that span multiple
geographic locations. We tested our method on both single-
and multi-location datasets.

We first considered our single-location dataset. Our cluster-
ing algorithm classified correctly 91% (77 of 85) of the blocks
in our single-location dataset. Seven blocks were identified to
have 2 clusters while one block was not clustered. Manual
investigation of the 7 blocks with 2 clusters showed distinct
latency distributions for the two clusters. On the other hand
host name and traceroute results did not show any evidence
that the IP addresses in any of these blocks were at different
locations. We still believe that these blocks were co-located,
but some addresses experienced different delays possibly due
to a wireless network or a slow switch/router. It is well-
known for example, that a wireless access point adds a
few milliseconds to the RTT of wireless hosts. We did not
investigate these cases further.

We next turn to our synthetic, multi-location dataset. First,
we discarded synthetic blocks built from the 7 misclassified
single-location blocks (see above) since we know those would
be identified as multi-location blocks. We then applied our
clustering methodology to the remaining not-co-located 99
synthetic blocks. Fig. 1 shows the number of identified clusters
and the corresponding distance between the two combined
blocks for each synthetic block. We correctly identified 88%
of these as multi-location blocks. Manually investigating the
remaining 12% false negatives we saw very similar delay
measurements for IP addresses in the combined blocks leading
to incorrect identification. Such delay measurements could be
a result of a relatively close proximity between the synthetic
blocks. Other possible reasons are blocks sharing most of the
network hops to the VPs or similar path distances from the
VPs. For example, the VP at Berlin Institute of Technology
observed similar delay measurements to the two synthetic
blocks at the University of Gttingen and Jade University of
Applied Sciences in Germany. The VP at Hamburg University
of Applied Sciences also observed similar delay measurements
to these two blocks. This is one case where the clustering
method falsely identified the two blocks as co-located.

To examine the most challenging blocks we also looked at
the 21 proximal almost-co-located synthetic blocks where the
real-world distance between each block is within 10 miles.
One example is the combination of Dongbei University of
Finance And Economics and Dalian University of Technology
in China, which are less than one mile away from each other.
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Fig. 1: Results of applying the delay-based clustering method
to 99 2-block combinations. The graph shows the number of
reported clusters for each synthetic block and the correspond-
ing distance between the combined blocks.

Despite close physical proximity, our methodology correctly
identifies 38% (8 of 21) of these blocks as multi-location.
Overall, 93% of the cases identified as multi-cluster blocks
are true positives in our ground truth datasets, which gave us
confidence that our methodology works reasonably well.

D. Bounding the False Positives

It is important for our clustering method to maintain a
low false-positive rate to ensure that we do not overestimate
the number of multi-location blocks (false positives). To
estimate an upper bound for the false positive rate, we built
another extended set of /24 blocks that are likely co-located.
We leveraged again address blocks in academic institutions.
We followed a similar procedure as with the single-location
dataset, but now we picked a random set of universities from
the original set of 4650 institutions that have at least a /16
block assigned to them. As before, we verified they do not
include web hosting services. Of these 100 /16 blocks we
found 3,062 /24 blocks that appear in the ISI dataset. We
ran our clustering method on all these blocks. The results
show that 239 blocks (7.8%) are not clustered, 2657 blocks
(86.77%) have one cluster, and 166 blocks (5.4%) have 2
clusters. The blocks that failed to cluster did not meet the
clustering criteria such as the minimum number of addresses
in a cluster. Since any of the blocks identified as multi-location
could indeed be multi-location blocks, we regard the 5.4% as
an approximate upper-bound for the false positive rate in our
clustering method.

V. CO-LOCALITY OF /24 BLOCKS

A. Identifying Multi-Location /24 Blocks

In this section we discuss the results of applying our
clustering methodology to the entire ISI dataset. Fig. 2 shows
the distribution of clusters in all 1.41M /24 blocks. About
17% (∼247K blocks) appear to have endpoints at multiple
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Fig. 2: Distribution of the number of clusters for all 1.41M
/24 blocks. More than 17% (∼247K blocks) are identified as
multi-location blocks.

locations. 82% of the multi-cluster blocks are grouped into
2 clusters of IP addresses. A small fraction, 0.44%, of the
multi-location blocks are grouped into four or more clusters.
Our method failed to cluster 73792 /24 blocks (5.23% of all
blocks), 98% of which have 20 IP addresses or less. A block
is identified as not clustered when the clustering method can
not find any cluster with the required minimum number of
IP addresses that satisfies all clustering criteria. While this is
more typical in blocks with small number of IP addresses, it
can also be true for any block with endpoints that are highly
scattered geographically.

B. Characterizing Multi-Location Blocks

Our method identified about 247K blocks as multi-location
blocks. We found multi-location blocks in 182 different coun-
tries in our dataset. We list the top 10 countries sorted by
the number of /24 blocks (second column) found in our
dataset of 1.41M blocks in Table I. The third and forth
columns respectively list multi-location /24 blocks identified
per country both as an absolute number and as a percentage
of a country total /24 blocks in the dataset. We note different
percentages of identified multi-location blocks across different
countries. For example, Germany has 42.34% of its blocks
in the dataset identified as multi-location. At the other end,
only 1.54% of the /24 blocks in China are labeled as multi-
location. The fifth column lists each value in column 2 as a
percentage of the total blocks assigned to each country by the
corresponding RIR. From the table we can see our dataset has
a reasonable representation of the IPv4 space for the top 10
countries, ranging from about 7% to over 21%. Differences
in multi-location percentages across countries may be due
to different policies of IP address assignment. We find that
a significant portion of the identified multi-location blocks
belong to big ISPs in countries with rich Internet infrastructure
such as the United States and Western Europe.

We list the top 10 ISPs (first column) and their ASNs
(second column) sorted by the number of /24 blocks (third



column) in Table II. The fourth column lists the total number
of blocks for each ISP in the dataset while the fifth column
is simply the ratio of the previous two columns. From the
table we can see that some ISPs (such as DTAG and ONC
NTT) show a high percentage of multi-location blocks, while
others have much smaller percentages. This difference may
reflect different IP allocation policies across ISPs with respect
to the geographic distribution of the addresses. It is also worth
mentioning that some ISPs dominate the multi-location blocks
in their countries in our dataset. For all the countries listed in
Table II, more than 40% of their multi-location blocks are from
few (less than four) ISPs. We leave further investigation of
these phenomena as future work. The sixth column in the table
lists each ISP blocks in the dataset (column 4) as a percentage
of the total blocks in its ASN announced prefixes (computed
based on data from http://cyclops.cs.ucla.edu/). From column
6 We can see that our dataset has a reasonable representation
for the top 10 ISPs ranging from about 12% to 49%.

TABLE I: Top 10 countries sorted on their total number of
/24 blocks in the dataset and the corresponding multi-location
blocks percentage per country.

Coun-
try

Blocks in
Dataset

Multi-
location
Blocks

Multi-
location

Blocks %

% of Country
Blocks in
Dataset

US 430947 84649 19.64% 6.83%
CN 98016 1507 1.54% 7.45%
DE 81925 34691 42.34% 17.45%
JP 71131 20899 29.38% 8.97%
GB 63609 12339 19.40% 13.24%
KR 60265 10296 17.08% 13.73%
FR 55870 6900 12.35% 17.97%
BR 53050 4772 9.00% 16.57%
RU 37772 2954 7.82% 21.10%
CA 35816 3414 9.53% 12.57%

VI. RELATED WORK

Much of the prior work in the area of IP geolocation focuses
on improving geolocation accuracy [12], [14], [21], [20], [8].
While prior approaches use different techniques, they are
mostly delay-based. These approaches are often evaluated on a
small number of targets (in the order of a few hundreds). Our
work is different in that it does not propose a new algorithm
to improve geolocation and is not limited to a small set of
targets. Instead, we characterize co-locality of about 1.41M
/24 blocks showing that many appear to have endpoints at
different physical locations.

Other IP geolocation work studied the accuracy and gran-
ularity of public and commercial databases. Poese et al. [17]
found that some databases split ISP blocks into smaller ones
for more accuracy; however, that made their geolocation
accuracy worse. Siwpersad et al. [18] study the geographic
resolution of geolocation databases. They compared loca-
tion information provided by the databases with locations
computed using Constraint-Based Geolocation (CBG) [12].
They concluded that the resolution of the databases is way
coarser in comparison. Gueye et al. [11] also used CBG
to estimate the max distance between block endpoints to

TABLE II: Top 10 ISPs sorted on their number of multi-
location blocks, and their corresponding percentages of ISPs’
total number of blocks in the dataset.

ISP Name ASN ISP
Multi-

location
Blocks

ISP
Blocks

in
Dataset

Multi-
location
Blocks

%

% ISP
Blocks

in
Dataset

Coun-
try

DTAG
Deutsche
Telekom AG

3320 21204 36359 58.3% 25.5% DE

COMCAST-
7922 - Cable
Comm

7922 11804 69117 17.1% 24.2% US

OCN NTT
Comm Corp.

4713 9204 14841 62.0% 12.9% JP

ATT-
INTERNET4
- AT&T Serv

7018 8994 43656 20.6% 11.8% US

Uninet S.A.
de C.V.

8151 7033 24269 29.0% 49.0% MX

UUNET -
MCI Comm
Serv

701 6881 28497 24.2% 14.7% US

CENTURYLINK-
US-LEGACY-
QWEST

209 6766 26197 25.8% 38.8% US

BSKYB-
BROADBAND-
AS Sky UK
Ltd

5607 5810 10501 55.3% 40.7% GB

VODANET
Vodafone
GmbH

3209 5665 14049 40.3% 41.5% DE

TPNET
Orange Polska
Spolka

5617 5561 14950 37.2% 46.6% PL

estimate its geographic span, which they concluded could be
large. Overall, prior work is concerned with the accuracy and
granularity of geolocation databases. Our work focused on
studying the co-locality of /24 blocks and did not address
actual geolocation. We used a different methodology that
enabled automatic identification of groups of co-located IP
addresses. Compared to other work, our dataset is much larger
and representative as well as more recent.

Freedman et al. [10] studied the geographic characteristics
if IP prefixes and their influence on BGP routing tables.
Their results showed about 1.4% of /24 blocks or smaller
span distances of more than 100 miles. They extracted the
locations of IP addresses based on DNS naming heuristics
using the undns tool [19]. DNS IP to location mapping has
many shortcomings and can be unreliable due to the lack of
naming standards. Our method is not dependent on identifying
IP addresses locations; instead we studied IP address proximity
using observed latency measurements from multiple VPs.

Fan et al. [9] studied the dynamics of mapping users to
Front End (FE) clusters, which are groups of geographically
proximate content servers used by Content Distribution Net-
works (CDNs). They enumerated CDNs’ FE servers and then
used a clustering technique similar to ours to group the servers
into FE clusters. While both methods used similar delay-based
clustering techniques, our study has a different purpose. We

http://cyclops.cs.ucla.edu/


use clustering to study co-locality of address blocks as opposed
to their goal of identifying an FE cluster of one CDN.

Compared to Hu et al. [13], from which we leveraged our
dataset, the authors implemented a method to scale existing
delay-based geolocation approaches such as Shortest Ping and
CBG to geolocate all responsive IPv4 address space. They
showed that careful selection of a small number of VPs can
maintain a comparable level of accuracy to that of using tens
of VPs. While we used a large subset of their raw probing
dataset, the problem we addressed is different. Their work
used delay measurements to geolocate IP addresses, while we
used them as signatures to identify groups of similar endpoints
in a block.

VII. CONCLUSIONS

Our work introduced a simple clustering methodology to
assess IP address block co-locality. We identified groups of
IP addresses that appear to be at different locations based on
their delay measurements observed from a number of vantage
points (VPs). We used a large dataset of 1.41M /24 blocks
and showed that more than 17% appear to be multi-location
blocks. This outcome disagrees with the common assumption
of /24 block co-locality in many geolocation databases. We
also found that the majority of the blocks identified as multi-
location belong to large ISPs in countries with rich Internet
connectivity such as the United States and Western Europe.

An important question that we did not address is how do
our results impact the information in geolocation databases
such as MaxMind. While it may appear straightforward, such
comparison is actually quite hard. Information in databases
such as MaxMind is not always accurate, so when disagree-
ments appear it is not clear who is right. Moreover, blocks with
different locations in MaxMind may still be close enough to
be missed by our methodology. Finally, MaxMind may contain
ambiguous information. For example, some /24 blocks were
found to have different locations, with part of the block labeled
with a city granularity, and the rest with a country granularity.
In order to address such questions one needs to build an active
measurement infrastructure and perform measurements when
there is disagreement.

Our work can be part of a system to evaluate geolocation
databases such as MaxMind. Such a system would likely
deploy a long-lived active measurement infrastructure and
compare results with both free and commercial geolocation
databases. A long-lived system can also track the movement
of IP address blocks as they get traded. We plan to pursue this
as part of future work.
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