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ABSTRACT
Wireless sensor networks enable dense sensing of the environment,
offering unprecedented opportunities for observing the physical world.
Centralized data collection and analysis adversely impact sensor
node lifetime. Previous sensor network research has, therefore, fo-
cused on in network aggregation and query processing, but has done
so for applications where the features of interest are known a pri-
ori. When features are not known a priori, as is the case with many
scientific applications in dense sensor arrays, efficient support for
multi-resolution storage and iterative, drill-down queries is essen-
tial.
Our system demonstrates the use of in-network wavelet-based sum-
marization and progressive aging of summaries in support of long-
term querying in storage and communication-constrained networks.
We evaluate the performance of our linux implementation and show
that it achieves: (a) low communication overhead for multi-resolution
summarization, (b) highly efficient drill-down search over such sum-
maries, and (c) efficient use of network storage capacity through
load-balancing and progressive aging of summaries.

1. INTRODUCTION
Research in sensor networks has been targeted at numerous scien-
tific applications, including micro-climate and habitat monitoring
[1, 2, 3], earthquake and building health monitoring ([4]) and oth-
ers. Such networks are primarily intended for long-term deploy-
ment, to obtain data about previously unobservable phenomena for
detailed analysis by experts in the field. Data analysis in such ap-
plications often involves complex signal manipulation, including
modeling, searching for new patterns or trends, looking for correla-
tion structures etc. For instance, researchers interested in building
health monitoring hope to be able to correlate changing vibration
patterns of buildings to data about small earthquakes. Conventional
approaches to such monitoring have involved wired and sparsely
deployed networks that transfer all data from sensors to a central
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data repository for persistent storage.
Advances in wireless sensor network technologies have opened up
unprecedented opportunities for dense sensing of such phenomena.
However, the goals of providing a non-invasive, in situ, dense, long-
term deployment of sensing infrastructure has necessitated that sen-
sor nodes be cheap, wireless, battery-powered, and consume very
little power. An unfortunate consequence of the limited resources
of such nodes is that they are highly communication constrained,
severely limiting deployment lifetime if raw data were transmitted
to a central location (Table 1,[5]). For instance, as shown in Ta-
ble 1, a micro-climate monitoring network composed of motes can
be expected to last at most a couple of months even with optimized
communication schedules. Storage requirements adds an additional
dimension to optimize in such systems, since the storage capacity
of low-end sensor nodes (motes[6], smartdust[7]) will be limited
by cost and form factor. Storage requirements of such systems are
exacerbated by the fact that they are often envisaged to be long-
lived, and operate unattended for many years. Non-volatile storage
prices and form factor will no doubt reduce, yet, for long-lived sen-
sor nodes, the disparity between the sensor data sizes, and the sizes
of storage that they can be equipped with will continue to generate
the need to optimize for storage.
Existing techniques offer schemes for applications where the fea-
tures of interest and aggregation operators are well-defined (Fig-
ure 1). For instance, a Diffusion query suggested in [9] tracks the
movement of a bird with known signature. Such an event detec-



Application Sensors Expected Data
Rates

Data Require-
ments/Year

Expected Lifetime using Cen-
tralized Data Collection

Expected Time to Storage Limit
if all Raw data were stored lo-
cally at each node

Mote MK-2[8] Mote MK-2
Building Health Monitor-
ing [4]

Accelerometer 30minutes seismic
events per day per
sensor

8Gb/year few weeks few months few days 1 year

Micro-climate Monitor-
ing

Temperature,
Light, Precipi-
tation, Pressure,
Humidity

1 sam-
ple/minute/sensor

40Mb/year few months 1 year 1 months 25 years

Habitat Monitoring Acoustic, Video 10 minutes of audio
and 5 mins of video
per day

1 Gb/year few weeks few months few days 8 years

Table 1: Data Requirement estimates for Scientific Applications

tion scheme can be augmented with in-network event storage us-
ing Data-Centric Storage (DCS [10]) such that related detections
are stored at predefined locations in the network. TAG [11] pro-
vides SQL-like semantics to define aggregates on a data collection
tree, so that operators at junctions can construct streaming data ag-
gregates such as histograms. While these techniques are all three
important to current and future sensing systems, they are not suf-
ficient for all applications. Diffusion and DCS require that queries
and associated processing be clearly defined a priori. While DCS
provides a storage framework, it is more concerned with placement
of named data at known locations, such that routing overhead is
low for queries. Storage is much less of a concern, since event de-
tections themselves are highly summarized representations of raw
sensor data, and therefore, not likely to be storage intensive. TAG
is a stream aggregation model, and relies on the knowledge of ag-
gregate operators such that these can be placed at junctions of a
data gathering tree. When details about queries and therefore the
aggregation operators, are not known a priori, such a stream model
is inappropriate.
Unlike querying frameworks that operate on known events, or pro-
posals for a continuous streaming data aggregation service, our goal
is to provide storage and search for raw sensor data in data-intensive
scientific applications. Constructing a storage and search system
that satisfies the requirements of data-rich, scientific applications is
a daunting task; the storage requirements are massive, and little a
priori information can be exploited to reduce these requirements.
Clearly, it is impossible for a sensor network to provide lossless,
persistent storage and querying that a centralized wired system can
provide. Our more modest goal, therefore, is to provide a lossy, pro-
gressively degrading storage model. We believe that such a model
might be necessary and sufficient for many scientific applications
for two reasons. First, a gracefully degrading storage model en-
ables a query and collect approach for fresh data where users can
precisely query recent data and selectively decide on important data
snippets that can then be collected losslessly for persistent offline
storage. Second, older data can be expected to be useful for identi-
fying long-term patterns, and anomalous occurrences. Thus, older
data can be stored more lossily, but with sufficient fidelity to satisfy
such long-term queries.
How do we provide distributed, progressively degrading storage in
a sensor network?
The key idea behind our system is spatio-temporal summarization:
we construct multi-resolution summaries of sensor data and store
them in the network in a spatially and hierarchically decomposed
distributed storage structure optimized for efficient querying. A
promising approach was introduced in [12], where multi-resolution
summarization using wavelets, and drill-down querying was pro-

posed. Summaries are generated in a multi-resolution manner, cor-
responding to different spatial and temporal scales. Queries on such
data are posed in a drill-down manner, i.e., they are first processed
on coarse, highly compressed summaries corresponding to larger
spatio-temporal volumes, and the approximate result obtained is
used to focus on regions in the network are most likely to contain re-
sult set data. Wavelet-based summarization can potentially benefit
query processing in three ways: (a) it produces a compact represen-
tation of data that highlights interesting features such as long-term
trends, edges and significant anomalies and is, therefore, useful for
general purpose query processing; (b) once generated, many spatio-
temporal queries can be satisfied with negligible communication
overhead by drill-down querying; and (c) aging (discarding) sum-
maries selectively gracefully degrades query performance over time
in storage-constrained networks.
In this paper, we address the performance issues of this scheme.
Specifically, given that storage is constrained, and communication
is expensive, can we intelligently store and lookup summaries so
as to maximize query accuracy? Our contribution in this paper is
twofold:

• We show that wavelet-based hierarchical summarization pro-
vides accurate responses to a broad spectrum of spatio-temporal
queries with low communication overhead. Although a pre-
liminary description of multi-resolution summarization was
presented in ([12]), in this paper, we present comprehensive
query surveys on an iPAQ-based implementation.

• Second, we show that in a storage-constrained environment,
graceful query degradation over time is achieved by networked
aging of summaries, such that more useful summaries are re-
tained longer. To our knowledge, no one has examined data
aging in the context of highly distributed sensor systems.

We present the design and implementation of DIMENSIONS on a
linux platform. To evaluate the performance of our system, we con-
sider queries posed on a geo-spatial dataset ([13]), which provides
precipitation data from a medium-scale sparse sensor network.

2. DIMENSIONS ARCHITECTURE
We describe the architecture of our system in three parts: (a) the hi-
erarchical wavelet processing that constructs lossy multi-resolution
summaries, (b) the expected usage of these summaries through drill-
down queries, and (c) the data aging scheme that determines how
summaries should be discarded, given node storage requirements.
This architectural description makes some assumptions, such as
grid placement of nodes, and a homogeneous network with nodes
of similar capability. Such assumptions are not necessarily charac-
teristic of sensor networks, on the contrary, irregular deployments
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may be frequently seen for reasons described in [14]. We discuss
these assumptions in more detail in a discussion section at the end
of this paper (Section 8).
Summarization and data aging are periodic processes, that repeat
every epoch. The choice of an epoch is application-specific, for in-
stance, if users of a micro-climate monitoring network ([1]) would
like to query data at the end of every week, then a reasonable epoch
would be a week. In practice, an epoch should at least be long
enough to provide enough time for local raw data to accumulate for
efficient summarization.

2.1 Multi-Resolution Summarization
Our goal is to construct a system can support a wide range of queries
for patterns in data. Therefore, we use a summarization technique
that is generally applicable, rather than optimizing for a specific
query. Wavelets have well-understood properties for data compres-
sion and feature extraction and offer good data reduction while
preserving dominant features in data for typical spatio-temporal
datasets ([15, 16]). As sensor networks mature and their applica-
tions become better defined, more specialized summaries can be
added to the family of multi-resolution summaries maintained in
such a framework.
Hierarchical construction (shown in Figure 2(a)) using wavelets in-
volves two phases. The first phase, temporal summarization, is
cheap since it involves only computation at a single sensor, and
incurs no communication overhead. This step consists of each node
compressing the time-series data by exploiting temporal redundancy
in the signal. Significant benefit can be expected from merely tem-
poral processing since a lot of sensor data is locally generated at
each node.
The spatial summarization phase constructs a hierarchical grid-based
overlay, and uses spatio-temporal wavelet compression to re-summarize
data at each level. Figure 2(a) illustrates its construction: at each
higher level of the hierarchy, summaries encompass larger spatial
scales, but are compressed more, and are therefore more lossy. At
the highest level (level 2), one or a few nodes have a very lossy
summary for all data in the network.

2.2 Drill-Down Querying

Drill-down queries on distributed wavelet summaries can dramat-
ically reduce the cost of search. The term is borrowed from the
data mining literature, where drill-down queries have been used to
process massive amounts of data. These queries operate by using a
coarse summary as a hint to decide which finer summaries to pro-
cess further. By restricting search to a small portion of a large data
store, such queries can reduce processing overhead significantly.
Our use of drill-downs is in a distributed context. Queries are in-
jected into the network at the highest level of the hierarchy, and
processed on a coarse, highly compressed summary corresponding
to a large spatio-temporal volume. The result of this processing is
an approximate result that indicates which regions in the network
are most likely to provide a more accurate response to the query.
The query is forwarded to nodes that store summaries for these re-
gions of the network, and processed on more detailed views of these
sub-regions. This procedure continues until the query is routed to
a few nodes at the lowest level of the hierarchy or until an accu-
rate enough result is found at some interior node. This procedure is
shown in Figure 2(b), where a drill-down query is forwarded to the
quadrants that are most likely to satisfy it.
Such hierarchical query processing offers multiple benefits. First,
when the target query result is sparsely distributed in a large net-
work, query results can be obtained in a few steps(O(log4 n), where
n is the number of nodes in the network). This benefit is provided
by other approaches that construct quad-trees ([17]), however, these
techniques can only answer a limited set of queries. Second, since
the data is processed and stored once, the up front cost of storage
can be amortized over multiple queries.

2.3 Networked Data Management
Hierarchical summarization and drill-down querying address chal-
lenges in searching for features in distributed sensor data. Provid-
ing a long-term storage and query processing capability requires
storing summaries for long deployment periods. In storage-constrained
networks (Table 1), however, resources have to be allocated for
storing new summaries by discarding older ones. The goal of net-
worked data management in our system is to discard summaries
such that network storage resources are efficiently utilized, and grace-
ful quality degradation over time is achieved.



Two challenges need to be addressed to achieve long-term grace-
fully degrading storage. The first, simpler challenge, is to balance
storage load among nodes in the network. Clearly, a simple hier-
archical arrangement as shown in Figure 2(a) distributes load quite
unevenly. For instance, the highest level clusterhead (level 2) is
solely responsible for all the coarsest resolution data. In a homo-
geneous network, a node that is elected to be the root has no more
storage than any other node in the network, hence, such a proce-
dure leads to uneven storage distribution. Our approach to deal
with this problem is a simple probabilistic load-balancing mecha-
nism, whereby each node assumes the role of a clusterhead at any
level for a limited time frame. After each such time frame, a differ-
ent node is probabilistically chosen to perform the role. As a result
of such a load-balancing procedure, the responsibility of being a
clusterhead is shared among different nodes. The performance of
such a scheme depends on the node distribution, with uniform dis-
tribution of load in a regular setting. We address this topic further
in Section 8.
Once we have such a load-balancing mechanism that ensures uti-
lization of network storage capacity , we can ask the second, more
challenging question. How long should a summary be stored in
the network? In other words, how should we apportion the lim-
ited storage capacity in the network between different summaries.
We define the length of time for which a summary is stored in
the network as the age of a summary. Each summary represents
a view of a spatial area for an epoch, and its aging renders such a
view unavailable for query processing. For instance, storing only
the highest level (level 2) summary in Figure 2(c), provides a con-
densed data representation of the entire network and consequently
low storage overhead compared to finer summaries, but may not of-
fer sufficiently accurate query responses. Storing a level 1 summary
(finer) in addition to the level 2 one, enables an additional level of
drill-down, and offers better accuracy, but incurs more storage over-
head. Figure 2(c) shows a typical instance of gracefully degrading
storage, the coarsest summary being stored for the longest period of
time, and subsequent lower level summaries being stored for pro-
gressively shorter time periods. While the figure shows a global
assignment of summaries for ease of explanation, the final goal of
networked data management is to provide a storage partitioning be-
tween different summaries for each individual node such that the
resultant global allocation matches user requirements. Thus, an al-
gorithm to determine the age of summaries in the network has to
weigh three factors: (a) the distributed storage resources in the net-
work, (b) the storage requirements of different summaries, and (c)
the incremental query benefit obtained by storing the summary.
In this paper, we propose two storage allocation schemes: (a) an
offline progressive data aging algorithm that operates on training
data to determine system parameters for online operation, and (b)
an online greedy algorithm.

3. AGING PROBLEM FORMULATION
Consider a network with N nodes placed in a regular grid structure,
over which a k-level (k ≤ log4 N ) multi-resolution hierarchy is
constructed. The network is homogeneous, and each node samples
sensor data at a rate of γ bytes per epoch, and has storage capacity,
S, which is partitioned among summaries at different resolutions.
As described earlier, the system provides a load-balancing mech-
anism that distributes data approximately equally between nodes
in the network. Therefore, in the analysis, we will assume perfect
load-balancing, i.e., each node has identical amount of storage al-
located to data at each resolution. We also assume that the network

Symbol Parameter
S Local storage constraint
f(t) User-specified aging function
g(t) Provided step function
ri Size of each summary communicated from a

level i clusterhead to a level i+1 clusterhead.
Raw data is not communicated

Ri Total data communicated in the network be-
tween level i and level i + 1

si Storage allocated to a level i clusterhead for
storing summaries from level i − 1

Agei Aging Parameter for level i, i.e., duration in
the past for which a level i − 1 summary is
available at a level i clusterhead

N Number of nodes in the network
β Resolution bias of the greedy algorithm

Table 2: Parameters for the Aging Problem

is a perfectly dyadic grid, i.e., a square with side 2i, where i is an
integer.

3.1 Communication overhead
The communication rate at level i is given by ri, which determines
the communication between a clusterhead at level i and a cluster-
head at level i + 1. Raw, uncompressed sensor data has rate γ, r0

corresponds to temporally compressed data which is transmitted to
a clusterhead at level 1 from a level 0 node. Similarly, ri for i ≥ 1
corresponds to communication overhead at increasing spatial scales
of processing. The rate ri depends on the compression ratio chosen
for a summary at level i, ci, defined as the ratio between size of
compressed data transmitted from a clusterhead at level i to one at
level i + 1, and the total amount off raw data that the level i quad-
rant generates. The relation between rate, ri, and the compression
ratio that it corresponds to, ci, is thus:

ri =
4iγ

ci

(1)

since there are 4i nodes within each quadrant at level i, each gener-
ating γ bits, whose data is compressed by a factor ci by the cluster-
head for the quadrant.
To compute the total amount of data communicated in the entire
network from level i to level i + 1, Ri, we use the fact that there
are 4log4 N−i clusterheads at level i. Thus,

Ri = ri4
log4 N−i (2)

In this paper, we will assume that the compression ratios, and there-
fore, the rates, have been appropriately chosen for the sensor data
being studied. In practice, the relationship between lossy compres-
sion and query performance would need detailed study with the sen-
sor dataset in question. Our goal, however, is to obtain appropriate
aging parameters for a given choice of rates, ri.

3.2 Storage Overhead
The amount of storage required at any level is related to the total
amount of data communicated to it from the lower level. For in-
stance, a level 2 clusterhead receives summaries from four level 1
clusterheads, stores these summaries for future queries, and gener-
ages summaries of its own that are sent to level 3. We define si as
the amount of data that a level i + 1 clusterhead allocates for sum-
maries from level i. Since four clusterheads at level i send ri data
to level i + 1, the amount of storage-per-epoch for a clusterhead
at level i + 1 to store level i summaries is 4ri. The corresponding



storage requirement over the entire network is Ri, which is the total
amount of data communicated from level i to level i + 1.

3.3 Query quality
Drill-down queries over this network can proceed hierarchically un-
til summaries are available for the requested data. For instance,
in the case of a 3-level hierarchy as shown in Figure 2(c), if only
the coarsest summary is available, the query terminates at the root,
if both the coarsest and finer summaries are available, it termi-
nates at level 1, and so on. We define the query accuracy if a
drill-down terminates at level i to be qi. Thus, in the hierarchy
in Figure 2(c), the query accuracy if only the coarsest resolution is
queried is q2, if the coarsest and finer resolutions are queried is q1,
and if all resolutions including raw data are queried is q0. In prac-
tice, q0 ≥ q1 ≥ ... ≥ qk, i.e., query quality increases with more
drill-down levels since finer data is being queried.

3.4 Approximating user-specified aging func-
tion

Let f(t) be a monotonically decreasing user-specified aging func-
tion which represents how much error a user is willing to accept
as data ages in the network. Such a function can be provided by a
domain expert who has an idea of the usage patterns of the sensor
network deployment. The solid curve in Figure 3 is one instance
of such a function, in which the user would like 90% query accu-
racy for data that is only a week old, and 30% accuracy for data
that is over a year old, with a monotonically decreasing accuracy in
between these two times.
We wish to approximate the user-defined aging function using a
step function, g(t), that represents query degradations due to sum-
maries being aged. As shown in Figure 3, the steps correspond to
time instants at which summaries of a certain resolution are aged
from the network. We represent this age of each summary by Agei.
The age of summaries generated at level i depends on two param-
eters: (a) the amount of storage apportioned at each level i + 1
clusterhead for summaries from level i, si, and (b) the amount of
data communicated from level i to level i + 1, Ri.
Since each node allocates si data to level i summaries and there
are N nodes in the network, the total networked storage allocated
to data from level i is Nsi. The total storage required for level
i summaries is Ri, given by Equation 2. Assuming perfect load-
balancing, the age of summaries generated at level i is:

Agei =
Nsi

Ri

=
4isi

ri

∀i ≥ 1 (3)

Age of the raw data, Ageraw is a special case, since it is not com-
municated at all. If sraw storage slots are allocated to each node
for raw data, the age of raw data, Ageraw = sraw

γ
.

The cost function that we choose is the instantaneous quality dif-
ference, qdiff (t), that represents the difference between the user-
specified aging function and the achieved query accuracy at time t
(shown in Figure 4). The minimum error aging problem can, then,
be defined as follows. Find the ages of summaries, Agei, at dif-
ferent resolutions such that the the maximum instantaneous quality
difference is minimized.

Min0≤t≤T (Max (qdiff(t))) (4)

under constraints:
Drill-Down Constraint: Queries are spatio-temporal and strictly
drill-down, i.e., they terminate at a level where no summary is

available for the requested temporal duration of the query. In other
words, it is not useful to retain a summary at a lower level in the hi-
erarchy if a higher level summary is not present, since these cannot
be used by drill-down queries.

Agei+1 ≥ Agei 0 ≤ i ≤ k

Storage Constraint: Each node has a finite amount of storage, which
limits the size of summaries of each level that it can store. The
number of summaries of each level maintained at a node ( si

4ri
) is an

integer variable, since a node cannot maintain a fractional number
of summaries.

Σ0≤i≤ksi ≤ S
si

4ri

= integer variable

Additional Constraints: In formulating the above problem, we con-
sider only drill-down queries and a network of homogeneous de-
vices with identical storage limitations. These constraints might
not always be true. For instance, queries may look at intermedi-
ate summaries directly, without drilling down. Previous research
has proposed a tiered model for sensor deployments ([18]), where
nodes at higher tiers have more storage and energy resources than
nodes at lower tiers. We do not consider such constraints in this
work, although some of these are straightforward extensions of our
problem.

Solving the Constraint Optimization Problem. For a mono-
tonically decreasing user-specified aging function, qdiff needs to be
evaluated only at a few points (as shown in Figure 4). The points
corresponds to the ages, Agei, for each of the summaries in the net-
work. As can be seen, the value of qdiff at all other points is greater
than or equal to the value at these points.
The minima of a maxima in Equation 4 can be easily linearized by
introducing a new parameter µ

Min0≤i≤n {µ} (5)

qdiff(Agei) ≤ µ ∀ i (6)

The complexity of the resulting optimization procedure depends on
the form of the user-specified aging function, f(t). For instance,
if this function is linear, the optimization can be solved using a
standard linear solver such as lp solve.

3.5 Desirable Parameters
While the emphasis in this paper is on solving the aging problem,
there are many parameters in the above formulation that impact the
performance of our system. We briefly describe some of the key pa-
rameters and desirable values for these parameters before address-
ing the aging problem in more detail.

• Data implosion: A significant concern with any data aggre-
gating tree is the implosion of data closer to the root. In our
multi-resolution hierarchy, the extent of implosion is deter-
mined by the rate, ri, which depends on the compression ra-
tio (ci) as shown in Equation 1. Since the numerator in Equa-
tion 1 grows exponentially with the level, slow growth in the
compression ratio (ci) will cause data implosion. An expo-
nentially growing compression ratio can alleviate this con-
cern.

• Progressively improving query response: The choice of com-
pression rations, ci also depends on the query quality (qi)
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provided by such a summary. For instance, consider an as-
signment of compression ratios where query quality does not
change significantly between on levels. Such an assignment
is not useful, since drill-downs cannot improve query qual-
ity. An effective choice of compression ratios would be one
where query quality progressively increases as a query drills
down the hierarchy. Such a choice makes it more effective to
progressively age summaries as shown in Figure 2(c).

• Load-balancing rate: A parameter that we ignore in the above
treatment is the rate of load-balancing, i.e.,, how frequently
must the system choose an alternate clusterhead to store data.
This load-balancing rate depends on the local storage allo-
cated to each level, si. For instance, if si is four epochs, then
the load-balancing rate for a level i clusterhead should be at
least once in four epochs. If not, recent data that is merely 4
epochs old is aged out of the system.

4. CHOOSING AN AGING STRATEGY
The constraint-optimization problem presented in Section 3 is straight-
forward to solve when all parameters are known. This brings up an
important question: How does one design an aging strategy with
limited a priori information?
Figure 5 shows different options that might be possible depending
on the availability of prior datasets for the application. In traditional
wired sensor networks, the entire dataset would be available cen-
trally, and could potentially be used to construct an optimal aging
strategy using the above-mentioned constraint-optimization proce-
dure1.
Distributed scenarios such as wireless sensor networks have to op-
erate with less information due to the overhead of centralized data
collection (Table 1). In some scientific applications, a data gather-
ing phase might precede full-fledged deployment (e.g.: James Re-
serve [1]), potentially providing training datasets. In other cases,
there might be available data from previous wired deployments (e.g.:
Seismic Monitoring [4]). These datasets can be used to train sensor
calibration, signal processing and in our case, aging, parameters
prior to deployment. The usefulness of a training procedure de-
pends greatly on how well the training set represents the raw data
for the algorithm being evaluated. For instance, if the environment
at deployment has deviated considerably from its state during the

1The size of the dataset and the latency in estimating parameters us-
ing the entire dataset could preclude optimal aging even in a wired
instance of the problem.

training period, these parameters will not be effective. Ultimately,
a training procedure should be on-line to continuously adapt to op-
erating conditions.
Systems, sometimes, have to be deployed without training data
and with little prior knowledge of operating conditions. For in-
stance, [19] describes sensor network deployments in remote loca-
tions such as forests. In the absence of training datasets, we will
have to design data-independent heuristics to age summaries for
long-term deployment.
The intent of this study is to see how to design algorithms for ag-
ing in two cases: with training data and without training data. For
the case when prior datasets are available, we use the optimization
problem to compute aging parameters, both for a baseline, omni-
scient scheme that uses full information, and for a training-based
scheme that operates on a limited training set. For deployments
where no prior data is available, we describe a greedy aging strat-
egy.

Omniscient Algorithm. An omniscient scheme operates on the
entire dataset, and thus, has full knowledge of the query error ob-
tained by drilling down to different levels of the hierarchy. The
scheme, then, computes the aging strategy by solving the optimiza-
tion function, presented in Section 3, for each query type. The
pseudo-code for such a scheme is shown in Algorithm 1. Omni-
science comes at a cost that makes it impractical for deployment
for two reasons: (a) it uses full global knowledge, which in a dis-
tributed sensor network is clearly impossible, and (b) it determines
optimal aging parameters for each query separately, whereas in
practice, a choice of aging parameters would need to satisfy all pos-
sible queries together.

for Each query in Q in set of QueryTypes do
qi = Query accuracy for Q obtained from entire dataset;
Solve constraint-optimization in Section 3;

Algorithm 1: Omniscient Algorithm Pseudocode

Training-based Algorithm. The training scheme differs from
the omniscient scheme in two ways: (a) data corresponding to a
brief training period is chosen for determining aging parameters,
rather than the entire dataset, and (b) a single choice of aging pa-
rameters is determined for all query types being studied.
Ideally, the choice of a training period should be such that the pa-
rameters extracted from training set is typical of the data that is



Level (i) Rate from level
i to level i + 1
(ri)

Storage
required
per-epoch
for data at
level i (4ri)

si (with
greedy al-
gorithm
β = 1)

Agei

Raw 1024 1024 0 0
0 (finest) 64 256 256 4
1 (finer) 16 64 128 8
2 (coarsest) 8 32 128 64

Table 3: Example of a greedy algorithm for a 16 node network

sensed during system deployment. Often, however, practical limita-
tions such as deployment conditions, storage, communication band-
width and personnel limit the amount of training data.
Unlike the omniscient idealized algorithm, the training scheme can-
not choose aging parameters per-query. In a practical deployment,
a single allocation scheme would be required to perform well for
a variety of queries. Therefore, the training scheme uses the error
for different queries to compute a weighted cumulative error met-
ric as shown in Algorithm 2. The cumulative error can be fed to
the optimization function to evaluate aging parameters for different
summaries.

Data : wi: Weight for query type i;
Ei: Error for query type i from the training set

Result : Assignment of number of summaries of each level to store locally
/* Evaluate weighted cumulative error over all query types */

qi =
�

query types wiEi

Number of query types
;

Solve constraint-optimization in Section 3;

Algorithm 2: Training Algorithm Pseudocode

Greedy Algorithm. We now describe a simple greedy proce-
dure that can be used in the absence of prior datasets. This proce-
dure assigns weights to summaries according to a measure of ex-
pected importance of each resolution towards drill-down queries,
represented by the parameter resolution bias (β). Algorithm 3 shows
this allocation procedure: when available storage is larger than the
size of the smallest summary, the scheme tries to allocate sum-
maries starting with the coarsest one. The ratio of the coarsest sum-
maries to summaries that are i levels finer are βi. For instance, in a
three-level hierarchy (Table 3), a resolution bias of two means that
for every coarse summary that is stored, two of finer, and four of
the finest summaries are attempted to be allocated. This parameter
is used to control how gradually we would like the step function (in
Figure 3) to decay.

2 1 0 2 1 2 2

First Pass Second Pass Pass
Third

Pass
Fourth

Local Storage Capacity = 512 units

Figure 6: Local Resource Allocation using the Greedy Algo-
rithm (β = 1). 4 coarsest, 2 finer, and 1 finest summaries are
allocated

The greedy allocation procedure specifies how the per-node pa-
rameters si are determined for each resolution level i. The net-
worked age of each summary is determined from si using Equa-
tion 3, which translates the local storage time period to networked
storage time period.

Data : S: local storage capacity;
N : number of nodes in the network;
k: number of levels;
ri : the size of a summary at level i

Result : Assignment of number of summaries of each level to store locally
while at least the smallest summary can fit into the remaining storage space do

Assign Summaries starting from the coarsest;
for level i = k down to 1 do

if storage is available then
allocate βk−i summaries of level i;

Algorithm 3: Greedy Algorithm Pseudocode

Wavelet Codec

1D 

3D
Quad Tree
DistributedSensor Data

Local

level N level N−1 ...
Circular Buffer Per Level

Local Storage

Figure 8: Implementation Block Diagram

For instance, consider a greedy allocation with resolution bias of 1
in a 64-node network with parameters provided in Table 3. There
are three levels in such a hierarchy, with every node storing raw
data, 16 clusterheads at level 1 storing summaries transmitted from
64 clusterheads at level 0, 4 at level 2 storing summaries from 16
level 1 clusterheads, and 1 clusterhead at level 3 storing summaries
from 4 clusterheads at level 2. Consider an instance where the lo-
cal storage capacity is 512 units and the sizes of each summary are
as shown in Table 3. The greedy allocation scheme allocates sum-
maries starting with the coarsest level as shown in Figure 4. In the
first pass, one of each summary except raw data is allocated, in the
second, one coarsest and one finer summary is allocated, and in the
third and fourth, one coarsest summary is allocated. Thus, a to-
tal of 128 bytes for coarsest, 128 bytes for finer, and 256 bytes for
finest summary are allocated at each node. The age of summaries
at various levels can be computed using the parameters provided in

Table 3 on Equation 3. For instance, Age0 is 40s0

r0
= 256

64
= 4

epochs.
This aging sequence is shown in Figure 7(b). The resulting alloca-
tion favors the coarsest summary more than the finer ones. Thus,
the network supports long-term querying (256 epochs), but with
higher error for queries that delve into older data. Raw data is aged
very quickly, therefore, queries after four epochs will be unable to
query raw data. Similarly, other allocations can be considered un-
der the same resource limitations. Figure 7(a) shows an allocation
that balances favors duration over detail, whereas the allocation in
Figure 7(c) favors detail over duration.

5. SYSTEM IMPLEMENTATION
In this section, we describe the implementation of DIMENSIONS
on a linux-based network emulation platform ([20]). There are three
major components to our system (shown in Figure 8): the wavelet
transform coding used to construct the summaries, the local storage
implementation that allocates storage to summaries from different
levels, and the distributed quad-tree, which provides a system ab-
straction to support hierarchical storage and drill-down search.
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Figure 7: Different global resource allocations that can result from a local allocation procedure.

Type Query
GlobalDailyMax What is the maximum daily precipitation for

year X?
GlobalYearlyMax What is the maximum annual precipitation for

year X?
LocalYearlyMean What is the mean annual precipitation for year

X at location Y?
GlobalYearlyEdge Find nodes along the boundary between low

and high precipitation areas for year X

Table 4: Spatio-temporal queries posed on Precipitation
Dataset

Wavelet Codec. The wavelet codec software is based on a high-
performance transform-based image codec for gray-scale images
(freeware written by Geoff Davis ([21]). We extended this coder to
perform 3D wavelet decomposition to suit our application. For our
experiments, we use a 9/7 wavelet filter, uniform quantizer, arith-
metic coder and near-optimal bit allocator. The 9/7 filter is one of
the best known for wavelet compression, and especially for images.
While the suitability of different filters to sensor data requires fur-
ther study, this gives us a reliable initial choice of wavelet filter.

Local Storage. Local storage is implemented as circular buffers
over berkeleydb (standard in glibc). Each summary is indexed by
the level, quadrant, and epoch to which it corresponds. Every query
on a summary involves first decompressing the summary, and then
processing the query on the summary.
The parameters of the local storage are determined using an ag-
ing strategy, that partitions the local storage between different sum-
maries.

Drill-down Queries. Our implementation considers four types
of queries (shown in Table 4) that involve different extents of spatio-
temporal processing that evaluate both advantages and limitations
of wavelet compression. The GlobalYearlyEdge and LocalYear-
lyMean queries explore features for which wavelet processing is
typically well suited. The Max queries (GlobalDailyMax, Globa-
lYearlyMax) looks at the Max values at different temporal scales.
The GlobalYearlyMax query looks at the maximum yearly precipi-
tation in the entire network, while the GlobalDailyMax queries for
the daily global maximum. Wavelet processing does not preserve
maxima very well in practice.
Both the LocalYearlyMean query and the two Max queries are pro-
cessed as regular drill-down queries. The query is processed on the

coarsest summary to compute the quadrant to drill-down, and is for-
warded to the clusterhead for the quadrant. The GlobalYearlyEdge
query tries to find nodes in the network through which an edge
passes, and involves a more complex drill-down sequence. This
query is first processed by the highest-level cluster-head, which has
a summary covering the spatial extent of the entire network. The
cluster-head uses a standard canny edge detector to determine the
edge in its stored summary, and fills a bitmap with the edge map.
The query and the edge bitmap are then forwarded to all quadrants
that the edge passes through. The cluster-heads for these quadrants
run a canny detector on their data, and update the edge bitmap with
a more exact version of the edge. The drill-down stops when no
edge is visible, and the edge bitmap is passed back up, and com-
bined to obtain the answer to the query.

Aging function. For our current implementation, we make two
relaxing assumptions for the aging function (f(t)) that make the
constraint-optimization problem described in Section 3 easier to
solve, (a) f(t) is monotonically decreasing, thus qdiff needs to be
evaluated only at a few points, and (b) f(t) is linear, thus standard
linear optimization tools such as lp solve can be used. Both of these
restrictions are not fundamental, and can be changed depending on
the problem being studied. Our choice merely represents a possible
choice of aging functions rather than an exhaustive list.
In this study, we consider linear aging functions of the form,

f(t) = 1 − αt (7)

The parameter α can be varied depending on the rate at which the
user would like the aging function to decay. A large α would gen-
erate a rapidly decaying aging function.

Distributed Quad Tree. The local storage partitioning dis-
cussed in the previous section allocates some portion of the storage
at each node to summaries for each level. The Distributed Quad
Tree (DQT) describes the routing and cluster-head selection scheme
that assigns summaries to each node in the network such that the al-
located networked storage is appropriately utilized.
The DQT is a routing overlay that decomposes the network space
hierarchically into quadrants, and assigns a rendezvous node to
each quadrant in the manner suggested by GHT’s structured repli-
cation ([22]). By using a geographical hash function, a globally
shared convention for selecting nodes, the construction of the tree
overlay requires no setup communication, eliminating the overhead



of clusterhead election and global consensus. In this sense, it is a
good choice for energy constrained sensor networks.
GHT specifies a geographic hashing scheme that translates a glob-
ally known constant and a bounding rectangle into geographic coor-
dinates. It relies on an underlying geographically informed routing
protocol that understands the semantics “route to the node that is
geographically closest to location (x,y)” to select and deliver mes-
sages to rendezvous nodes. The extension of GPSR that is presented
in [22] is such a protocol.
Our implementation differs from the above in two ways. First, in
our current implementation, we used a link-state geographic routing
protocol enhanced to support GPSR semantics. Since the popula-
tion of link-state routing tables require the dissemination of each
node’s link state to every other, it may provide adequate routing
for relatively small networks, but it is not a scalable solution for the
long run. We therefore plan to port the GPSR and its GHT enhance-
ment to our architecture. Second, DQT supports a time varying ver-
sion of the geographic hash so that the particular nodes chosen for
rendezvous in the DQT overlay change at a specified frequency.

6. EXPERIMENTAL EVALUATION
Since available dense wireless sensor network datasets lack suffi-
cient temporal and spatial richness , we use a geo-spatial precipita-
tion dataset [13] for our current performance studies. This dataset
provides a 15 x 12 grid of daily precipitation data for forty five
years, where adjacent grid points are 50 kilometers apart. Both the
spatial and temporal sampling are much lower than what we would
expect in a typical sensor network deployment (Table 1). While the
data sizes and scale would be expected to be larger in practice, this
dataset has edges and exhibits spatio-temporal correlations, both of
which are useful to understand and evaluate our algorithms. While
such geo-spatial datasets are readily available, further research has
to be done to understand if such datasets are representative of sen-
sor datasets such as at James Reserve ([1]). In all our experiments,
we replayed this dataset.
Since the spatial scale of the dataset is low, it is not feasible to use
wavelet processing along the spatial axis. In practice, a grid of size,
at least 30x30 would be required before spatial wavelet process-
ing can be expected to be effective. For the given dataset, there-
fore, multi-resolution datasets were constructed by repeated tem-
poral processing.

6.1 Communication Overhead
Communication overhead over a multi-resolution hierarchy is gov-
erned by the rates, ri, that are determined as shown in Equation 1.
The problem of selecting optimal rates, ri, for a particular dataset is
outside the scope of this paper. Our objective is to choose a repre-
sentative set of parameters that determine the communication over-
head, i.e., the compression ratios at each level, ci, and the amount
of data per epoch, γ, such that the rates, ri increase slowly with the
level of the hierarchy.
We select the parameters as follows:

• γ = 3epochs ∗ 365samples/epoch ∗ 2bytes/sample =
2190bytes. To construct summaries, we used an epoch of
three years i.e., the summary construction process repeats ev-
ery three years. The choice of a large time-period was due to
the temporal infrequency of samples. Each node in the net-
work would have 1095 samples to process every three years,
enough to offer reasonable temporal compression benefit. In
a typical deployment (Table 1), where nodes generate more
data, the epoch would be much shorter.

Hierarchy level
(i)

Num Cluster-
heads (Nc)

Compression
Ratio

Rate (ri) Total
Data
(Ncri)

Raw 180 1 2190 (γ) 394.2K
0 to 1 180 5.97 367.1 66.08K
1 to 2 48 11.91 689.1 33.08K
2 to 3 12 23.46 1400.1 16.8K
3 to 4 4 50.9 2933.5 11.73K

Table 5: Communication Rate per Level

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5
F

ra
ct

io
n 

E
rr

or
 (

M
ea

su
re

d 
- 

R
ea

l/R
ea

l)
Level in hierarchy where query terminates

Error vs Level

GlobalDailyMax Query
GlobalYearlyMax Query
LocalYearlyMean Query

Figure 9: Query error decreases as they drill-down to lower lev-
els of hierarchy. Summaries at lower levels typically contribute
less to reducing query error than higher level summaries.

• c0 : c1 : c2 : c3 = 6 : 12 : 24 : 48. As described in
Section 3.5, compression ratios should be chosen such that
the exponential effect of aggregating data is mitigated. Our
choice of compression parameters has two features that mit-
igate the increase in data, (a) temporal compression ratio of
6 means that approximately 367 bytes are communicated by
each node at level 0, instead of 2190 bytes, and (b) the com-
pression ratios increase by a factor of two instead of four (in
Equation 1), thus, data implosion towards the root is less se-
vere.

The total communication overhead for summaries at each
level is shown in Table 5. The first row (Raw data) corre-
sponds to uncommunicated data. The results from the codec
were within 4% the input compression parameters. The stan-
dard deviation results from the fact that the dimensions of the
grid are not perfectly dyadic (power of two) and therefore,
some clusterheads aggregate more data than others.

6.2 Query Performance
We now evaluate the performance of drill-down queries over the
multi-resolution dataset constructed as described above. Our goal
in this section is to demonstrate the search features of the system
and prove our claim that multi-resolution storage can be useful for
a broad variety of queries.
To evaluate performance, each of the queries shown in Table 4 was
posed over the dataset. For yearly queries (GlobalYearlyEdge and
and GlobalYearlyMax), there were 45 instances each, since there
are 45 years of data. For the GlobalDailyMax query, the results are
averaged over 16801 instances (one for each day), and for Glob-
alYearlyMean, the queries were averaged over 8100 queries (180
nodes x 45 years).



The query accuracy for a drill-down query that terminates at level
i (qi) is measured as the fraction error i.e., the difference of the
measured drill-down result and the real result over raw data over
the real result (measured - real/real). Figure 6.2 shows the variation
of query quality for queries defined in Table 4 for different levels of
drill-down.
Performance for LocalYearlyMean, GlobalYearlyMax and Local-
DailyMax queries are very similar, as shown in Figure 6.2. All of
them have an error of 40-50% if only the coarsest (level 4) sum-
maries are queries, but reduce rapidly to almost 0% when the drill-
down proceeds to the lowest level. Even one or two levels of drill-
down significantly improve error, for instance, querying level 3 in
addition to level 4 reduces error to under 20%, and querying level 2
as well reduces error to less than 5%.
For the GlobalYearlyEdge query, we measure error as the fraction
of nodes missed from the real edge. This query exhibits a different
trend from other queries, with lower error by querying the coars-
est level, and less benefit due to further drill-downs. Thus, in Fig-
ure 6.2, the error is 15% when only the coarsest (level 4) summaries
are queried. The error reduces to 11% with an additional level of
drilldown, however, further drill-downs do not improve the result.
This trend is consistent with what one would expect for edge de-
tection, the edge is more visible in a lower resolution (and conse-
quently, higher level) view, and becomes more difficult to observe at
lower levels of the hierarchy. In a larger network, with more levels,
improvement might be observed using drill-down. Additionally, a
more relaxed definition of query error can be considered, for in-
stance, only nodes that are not nearest neighbors of the real edge
are considered erroneous. The edge error is seen to be less than 2%
with such a definition.
The communication overhead of in-network processing of these
queries is extremely low as well. Even with false positives, the total
query overhead of a GlobalYearlyEdge query is less than 10% of the
network. Other drill-down queries such as GlobalYearlyMax and
LocalDailyMax drill-down query only around 5% of the network.
This performance results from hierarchical processing of queries,
and for many queries that require a single answer (mean,max,min),
the overhead is only O(log4N) (one branch probed per level), i.e.,
only around 5% of the network is queried for the result.
These results demonstrate a key advantage of multi-resolution stor-
age. While there is an initial overhead of communicating sum-
maries (described in Section 6.1), this overhead can be amortized
over many queries posed by the users.

6.3 Performance of Aging Strategies
As shown in the previous section, different summaries contribute
differently to the overall query quality, with the top-level summary
contributing maximum. For instance, in the case of the GlobalDai-
lyMax query, query error reduces by 50% by storing only the level
4 summary. Adding an additional level of summaries decreases
error by 15%, and so on till storing raw data results in 0% error.
This trend motivates the aging problem, which allocates storage to
different summaries based on their marginal benefit to query pro-
cessing, and their storage utilization. In this section, we will look at
the impact of aging summaries based on their relative importance.
Since raw data adds little to the overall query result (Figure 6.2),
we will assume that nodes store only summaries at various levels
and not raw data.
The parameter, α, in Equation 7 is varied between 0.01 and 0.002,
and determines whether the user would like a fast decay of query
accuracy over time, or a slower decay.
We evaluate the three aging schemes, using the globally omniscient

α Omniscient Training Greedy
Duration
(β=0.5)

Balanced
(β=1)

Detail
(β=2)

0.01
(fast)

13.6% 14.8% 20.6% 13.7% 13.9%

0.0033 15.0% 15.9% 25.3% 16.0% 16.0%
0.002
(slow)

18.2% 19.2% 28.6% 20.0% 26.1%

Table 7: Comparison of between omniscient, training and
greedy schemes. Training is within 1% of the omniscient
scheme. The greedy algorithm shows significant variability to
the choice of β, however, the balanced resolution bias performs
within 2% of the omniscient scheme.
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Figure 10: Comparison of Omniscient, Training and Greedy
strategies for GlobalYearlyMax query(α = 0.002)

scheme as a baseline to compare the more practical training-based
and greedy schemes. In this comparison, we increase the amount
of local storage allocated to each node in the network from 0KB to
100KB, in steps of 4KB blocks. As with the previous section, our
metric for error is qdiff (Equation 4).

Omniscient Strategy: Establishing a Lower Bound for
Query Error
The omniscient scheme uses the query error for each query on the
entire dataset (Figure 6.2) to determine the optimal choice of ag-
ing parameters for each query type. As shown in Table 6, the error
from the coarsest summaries ranges from 30% to 50% for differ-
ent queries. As the local storage capacity increases, however, the
optimal algorithm performs dramatically better, until 0% error is
achieved when all levels can be drilled down. This behavior is also
shown in Figure 10, which shows the performance of this scheme
for the GlobalYearlyMax query on one instance of a user-specified
linear aging function (α = 0.002). In networks composed of nodes
with low local storage capacities, the error is high since only the
coarsest summaries can be stored in the network .

Evaluating Training using Limited Information
In our evaluation, we use a training period of two epochs of data
(10% of total deployment time) to predict the query accuracy for
the entire dataset. Summaries are constructed over the training set,
and all queries in Table 4 are posed over these summaries. Ideally,
the error obtained from the training set would mirror error seen by
the omniscient scheme.
How effectively does the the training dataset represent the entire



Level till which drilled
down

GlobalYearlyMax GlobalDailyMax LocalYearlyMean GlobalYearlyEdge Cumulative
Training
Error

Omniscient Training Omniscient Training Omniscient Training Omniscient Training
1 1.6% 1.2% 3.2% 6.6% 1.0% 1.0% 11.2% 7.5% 5.4%
2 5.5% 5.0% 7.2% 8.9% 5.9% 6.1% 11.2% 7.5% 9.2%
3 16.9% 12.2% 17.6% 12.9% 20.9% 21.0% 11.2% 7.5% 17.9%
4 38.6% 32.2% 40.8% 30.4% 48.4% 49.8% 15.6% 7.5% 39.9%

Table 6: Comparing the error in Omniscient (entire) Dataset vs Training (first 6 years) Dataset

dataset? Table 6 shows that the predicted error from the training set
is typically within 5% of the query quality seen by the omniscient
scheme, but is almost 10% off in the worst case (GlobalDailyMax
query over level 4 summaries). Also, in the case of the GlobalYear-
lyEdge query, the error seen from the training dataset is consistently
off of the average result. Thus, the training set is moderately repre-
sentative of the entire dataset.
To compute the cumulative error using Algorithm 2, we use equal
weights for all queries. When usage statistics of sensor networks
become available, application-specific weighting schemes can be
used. This cumulative error can be fed to the optimization function
to evaluate aging parameters for different summaries.
The first column in Table 7 shows the difference between the per-
formance of training and the optimal schemes. These results are ag-
gregate results over a range of storage sizes (0 - 100KB) and query
types (shown in Table 4). Training performs exceedingly well, and
in fact is on average less than 1% worse than the optimal solution.
These results are very encouraging since it suggests that even with
moderately representative training datasets, very good performance
can be observed.
Having seen the aggregate result, we look at a single run in Fig-
ure 10, that shows how the performance varies as the amount of
storage allocated to a node is increased. Figure 10 shows the result
of such a resource allocation for the GlobalYearlyMax query. As
expected, increasing the storage size reduces error for all schemes.
Notably, the training curve follows the omniscient storage alloca-
tion curve very closely (almost indistinguishably). Similar results
were obtained for other queries as well.

Greedy Algorithm
We use three settings for resolution bias (β), a low resolution bias
(β = 0.5), that favors duration over detail, a medium bias (β =
1), that balances both duration and detail, and a high bias (β = 2),
that favors detail over duration.
As seen in Table 7, varying the settings of resolution bias for the
greedy heuristic significantly changes the performance of the greedy
heuristic. When α is large, the user-specified aging function has
a steep slope. In this case, a low resolution bias (duration) per-
forms poorly since it prefers coarser summaries much more than
finer ones. In contrast, when α is small and the user-specified aging
function has a gradual slope, a high resolution bias (detail) performs
exceedingly bad, since allocates more storage to finer summaries,
thereby reducing duration. In both cases, the balanced summary
assignment performs well, and has a worst-case performance of
around 5% in comparison with the omniscient scheme, and 4% in
comparison with the training scheme.
This result can be understood by looking at the relationship be-
tween resolution bias, β, and the slope of the user-specified aging
function, α. A low value of resolution bias (duration) results in
more storage being apportioned to coarser summaries, thus bias-
ing towards very long duration, but low accuracy. The maximum
user error (max(qdiff))is observed for queries that look at recent

Scheme Storage per node Communication per node
Avg StdDev Avg StdDev

Fixed Hierarchy 0.045 0.022 0.0154 0.014
Load-balanced Hierarchy 0.015 0.004 0.015 0.006

Table 8: Comparison of Load-balanced hierarchy to fixed hier-
archy

data, where the user expects high accuracy, but the system can only
provide coarse summaries. Thus, such an allocation performs well
when the user-specified aging function requires very long duration
storage (eg: α = 0.002), but badly for short duration storage (eg:
alpha = 0.05). In contrast, a higher value for resolution bias (de-
tail) allocates significant storage to finer summaries. The error is
low for queries on recent data, but the age of all summaries is lim-
ited as well. Queries on old data will result in a large max(qdiff)
because summaries will be unavailable in the network for old data.
Thus, as we vary the resolution bias, β between these extremes, we
get different results from the greedy algorithm. An ideal choice of β
is seen to be β = 1 (balanced), which lies between these extremes,
and results in more gradual aging of summaries.
This hypothesis also explains Figure 10. For a user-specified aging
function that favors duration (α = 0.002), the greedy algorithm
with detail bias consistently has high error, whereas balanced and
duration bias perform significantly better.

6.4 Performance of the Distributed Quad-Tree
To quantify the benefit provided by our load-balanced DQT im-
plementation, we compare the multi-hop communication and stor-
age overhead of propagating data up the tree using rotating hash
nodes against having nodes fixed at the centers of their covering
rectangles. The study was done in the Emstar simulation frame-
work ([20]), on a 8x8 grid topology, where each node has at most 8
neighbors. Each node generates the amount of data provided in Ta-
ble 5, and picks a different hash location periodically as described
in Section 5. Root nodes rotate at a rate of once every 10 epochs.
A tree node i levels below the root rotates at a frequency 2−i times
that of the root.
Table 8 shows that that a load-balanced hierarchy reduces storage
used per node by a factor of three, while having similar communica-
tion requirements as a fixed hierarchy. In addition, the standard de-
viations for both communication and storage reduce approximately
by a factor of 2, showing that the scheme balances these parame-
ters among nodes well. Communication load for the load-balanced
scheme is not entirely balanced (standard deviation is non-zero) be-
cause of limitations of a finite grid, and nodes in the middle of the
grid (or at the center of any ad-hoc network), being subjected to
more multi-hop communication overhead than other nodes. In an
longer simulation on a larger scale network, we would expect the
communication load to be more uniformly balanced in the network.
Similarly, in the case of storage overhead, the hash function is prob-
abilistic, and there is a finite probability of the same node being



selected more (or less) than the expected number of times. In an
irregular network, storage balancing would depend on the spatial
density of node deployment as well, a problem that we are pursuing
as part of future work.
How does this impact aging parameters of the system? Consider an
example where a node were to store summaries for a certain level
for 8 epochs. If the frequency of rotating clusterheads were chosen
to be once every 8 epochs, there is a finite probability that the same
node is hashed to twice within the aging period, thus, resulting in
the loss of summaries. Such a situation can be mitigated by choos-
ing the rotation period to be faster than the number of summaries
stored at each node. For instance, if the frequency of rotation is
once every 2 epochs, then, better storage balancing can be achieved.
In practice, since nodes will store many summaries, faster rotation
will also balance communication load better.

7. RELATED WORK
We briefly describe the rationale behind our design choice to use
wavelets, and proceed to describe a broad spectrum of related work.

Survey of Data Compression and Representation Tech-
niques. Techniques for data and signal compression abound. Typ-
ical lossless data compression techniques include Huffman, arith-
metic encodings, the Lempel-Ziv coder, etc. These techniques re-
duce data by a factor of two to ten in practice, and rarely provide the
compression ratios of hundreds that we would like in our system.
Lossy schemes, on the other hand, can be tuned to compress data to
fit communication requirements in sensor networks.
Wavelets decompose the data recursively into various time and fre-
quency scales, and provides a good representation of both time and
frequency content in a signal. This flexibility has been the primary
reason behind the popularity of wavelets in signal and image com-
pression, time-series data mining, and approximate querying [23,
24]. Wavelet compression tends to preserve interesting features
such as edges and succinctly captures long-term behavior, and con-
sequently provides a data representation ideal for spatio-temporal
querying. Its benefit for edge and boundary detection stems from
two properties: (a) subband coding preserves sharp changes at var-
ious scales, thus providing a good representation of edges and (b)
multi-scale techniques are useful to detect edges that may be visible
at different spatio-temporal scales.
The easily distributable nature of wavelet transforms and the com-
pact support is also exploited in [25] to address the sensor broadcast
problem. While the reasons for using wavelets are similar, this work
addresses a different problem from ours.

Distributed Data Storage. Distributed databases and data stor-
age have been extensively studied in the context of the wide-area In-
ternet. Aging of web-pages is particularly important for web-cache
performance and has, therefore, been explored by researchers (eg:
[26]). While similar in motivation, these systems differ from ours
in many significant respects: (a) web pages are not known to ex-
hibit spatial correlations, (b) they are designed for a much more
resource-rich infrastructure, and (c) bandwidth, while limited, is a
non-depletable resource unlike energy.
Data Centric Storage (DCS [10]) is a system that extends primitives
used in the peer-to-peer Content Addressable Networks system to
provide a geographic hash table (GHT [22])-based high-level event
storage in sensor networks. DCS assumes that an event description
exists a priori, and therefore, event detections can computed in a
distributed manner within the network. The system is responsible

for storing these detections (called observations) in a distributed
framework for easy access. DIMENSIONS is designed for data
mining, and does not assume a priori knowledge of event signa-
tures. Thus, it involves mining massive spatio-temporal datasets,
which is not the focus of DCS. The distributed storage aspects of
our system have similarities to the techniques used in DCS, and we
extend this scheme in our DQT implementation.

Data Mining. Geographic Information Systems (GIS) deal with
data that exhibits spatio-temporal correlations, but the processing is
centralized, and algorithms are driven by the need to reduce search
cost, typically by optimizing disk access latency. Some of these
approaches ([23, 24, 27]) propose the construction of wavelet syn-
opses, for fast processing of range-sum queries. Many of the tech-
niques proposed for approximate querying and data mining have in-
formed the coding techniques that we choose in our system. An in-
teresting example of a distributed infrastructure for wide-area data
mining of sensor data is Astrolabe [28], which proposes a hierarchi-
cal data mining approach that is similar in motivation and design to
DIMENSIONS. Astrolabe hierarchically aggregates data, and uses
a drill-down approach. There are three key differences between
Astrolabe and our work: (a) Astrolabe is a generic platform, and
does not specify an aggregation function to use, while our system is
built upon being able to do multi-resolution wavelet processing in a
distributed framework. (b) Astrolabe is designed for the wide-area
Internet and therefore assumes less stringent bandwidth constraints.
It uses bimodal multicast as the communication framework, which
ensures very high reliability, but incurs high communication over-
head. (c) The storage constraints are not as stringent in a wired
network and are, therefore, not addressed.

Sensor Network Databases. In recent years, many database
mechanisms have been extended to sensor network data querying.
Systems such as Diffusion [9], Cougar [29] and TinyDB [11] use
in-network processing techniques. Diffusion provides a general
framework for routing and in-network processing. It’s query mech-
anism is simply to flood an interest to all network nodes. Its ef-
ficiency comes in the way it is designed to process matching data
in a hop-by-hop fashion on the return path, potentially reducing
redundancy while transforming the data from raw time series infor-
mation into a more compact and semantically richer representation.
When multiple data sources respond to a query, Diffusion exploits
the property that data generated from spatially proximal nodes is
likely to be correlated. While Diffusion takes a dynamic approach
to in-network processing, where data can be combined anywhere
along the routing path, Cougar proposes a static model, where a
centrally computed query plan decides where to place joins within
the network. Finally, TinyDB provides a platform for resource-
constrained devices, and provides a programming interface to cre-
ate new queries, and inject them into the network. The above ap-
proaches operate under the assumption that event description is
known a priori, and that queries are explicitly defined for these
event descriptions. Our system is designed to look for and find
patterns in data.
An extension to TinyDB, [30], suggests the use of wavelets for con-
structing histogram summaries of sensor data. Histograms lose in-
formation of the temporal and spatial instant when a data sample
was collected. Thus, while such an approach can be efficient when
the goal is to gather a histogram of sensor data, it would be ineffec-
tive for our objective i.e., to look for events at different granularities,
and multi-resolution data collection.



Quantization. The aging problem that we discuss is similar in
spirit to non-uniform quantization that is ubiquitous in signal pro-
cessing. Given a finite number of bits to represent each sample,
the goal of non-uniform quantization is to construct a step function
such that an error metric is minimized. The aging problem that we
discuss is an instance of quantization applied in a distributed frame-
work, and to a specific dataset.

8. DISCUSSION
Our work is preliminary, and there are many aspects that need to be
considered such as the impact of irregularity, considering correla-
tion statistics in storage overhead, and finer progressive aging.

Impact of irregularities. Irregularities in spatio-temporal sam-
pling of data impacts numerous aspects of our design. Along the
spatial axis, our architectural description currently assumes that
nodes in the network are arranged in a grid, or otherwise uniformly
deployed. Along the temporal axis, data from different areas in the
network would need to be synchronized before our techniques can
be used. While techniques such as [31] and [32] can be used to
create a globally synchronized timebase, such a mechanism might
not always be available or cost-effective. Two aspects of our system
would need to be modified in the event of irregular spatio-temporal
deployment:

• The wavelet processing approach that we use currently oper-
ates on regularly spaced datasets. We are exploring the use of
interpolated wavelet processing ( [33]) to relax this assump-
tion.

• The simple load-balancing mechanism that we use currently
works well on uniformly deployed networks, but clearly needs
to be extended in an irregular spaced deployment. As we de-
scribe in [14], skewed storage load distribution would result
in the irregular case.

Data Correlation Statistics. In this work, we make the as-
sumption that summaries at the same level are of equal size.
We impose two restrictions on the creation and storage of sum-
maries in our current work that might change in future versions.
First, we assume that all summaries at the same level are of equal
size. While this constraint has the advantage of making commu-
nication balanced between different parts of the network, this may
not be ideal for query accuracy, since it ignores the actual varia-
tions in the data in different regions of the network. In future work,
we will consider error-based configurations, that look at correlation
statistics to determine the amount of data to be transmitted at each
level.

Finer Progressive Aging. We assume that summaries are not
progressively degraded by nodes that store them. This restriction
can be relaxed, and can result in more graceful quality degradation
by degrading in smaller steps. Such a mechanism can be introduced
quite easily into the aging strategies that we discuss in this paper.
We do not discuss how to determine the ideal hierarchy depth for
a particular application. A hierarchy with a large number of levels
might not be useful since the high-level summaries might be too
coarse for useful query processing. For medium scale networks,
such as the one that we consider, the number of levels (log4 N )
is presumably low (less than 5). For a much larger network, this
question would need to be addressed.

9. CONCLUSION
Ideally, a search and storage system for sensor networks should
have the following properties: (a) low communication overhead, (b)
efficient search for a broad range of queries, and (c) long-term stor-
age capability. In this paper, we present the design and evaluation
of DIMENSIONS, a system that constructs multi-resolution sum-
maries and progressively ages them to meet these goals. This sys-
tem uses wavelet compression techniques to construct summaries
at different spatial resolutions, that can be queried efficiently using
drill-down techniques. We demonstrate the generality of our sys-
tem by studying the query accuracy for a variety of queries on a
wide-area precipitation sensor dataset.
A significant contribution of this work is extending our system to
storage-constrained large-scale sensor networks. We use a com-
bination of progressive aging of summaries, and load-sharing by
cluster-rotation to achieve long-term query processing under such
constraints. Our proposal for progressive aging includes schemes
that are applicable to a spectrum of application deployment con-
ditions: a training algorithm where training sets can be obtained,
and a greedy algorithm for others. A comparison shows that both
the training and greedy scheme perform within 2% of an optimal
scheme. While the training scheme performs better than the greedy
scheme in practice, the latter performs within 1% of training for an
appropriate choice of aging parameters. We demonstrate the load-
sharing properties of our system in a sensor network emulator. In
our future work, our primary focus will be deploying our system in
a real sensor network deployment scenario.
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