
0018-9162/00/$10.00 © 2000 IEEE November 2000 63

R E S E A R C H F E A T U R E

Network Visualization
with Nam, the VINT
Network Animator

N
etwork protocol designers face many difficult
tasks, including simultaneously monitoring
state in a potentially large number of nodes,
understanding and analyzing complex mes-
sage exchanges, and characterizing dynamic

interactions with competing traffic. Traditionally
they’ve used packet traces to accomplish these tasks,
but traces have two major drawbacks: They present an
incredible amount of detail, which challenges the
designer’s ability to comprehend the data, and they are
static, which hides an important dimension of proto-
col behavior. As a result, detailed analysis frequently
becomes tedious and error-prone. Although network
simulators such as the VINT project’s ns1 can easily
generate numerous detailed traces, they provide lim-
ited help for analyzing and understanding the data.

Nam, the network animator that we developed in
our work at the VINT project, provides packet-level
animation, protocol graphs, traditional time-event
plots of protocol actions, and scenario editing capa-
bilities. Nam benefits from a close relationship with
ns, which can collect detailed protocol information
from a simulation. With some preprocessing, nam
can visualize data taken directly from real network
traces.

NETWORK PROTOCOL VISUALIZATION
Researchers have explored network protocol visu-

alization in many contexts, beginning with static pro-
tocol graphs and visualization of large-scale traffic,
and more recently including simulation visualizations
and editors. Network visualization tools allow design-
ers to take in large amounts of information quickly,
visually identify patterns in communication, and bet-
ter understand causality and interaction.

Graphs of packet exchanges are useful for under-
standing cause and effect in complex protocols like TCP.
Work at MIT2 and the University of Arizona3 is typical:
Graphs show time against TCP sequence numbers on a
2D graph, sometimes with annotations to show special
events. Similar time-event graphs have proven useful in
understanding reliable multicast behavior in SRM.4

Several groups have looked at visualization of large,
static network data sets. Important questions include
choice of layouts based on real-world geography or
network topology and how best to use animation,
color, and 3D. More generally, many researchers have
tackled the problem of visualization of complex data.5

Systems like these share the principle that multiple
linked views are essential for visualizing complex data.

Several network simulation systems include explicit
support for visualization, either customized to a par-
ticular end application or to something more general.
Opnet includes visualization capabilities, and
Simphony6 explicitly includes packet-level animation.
Systems such as Opnet and Parsec7 have provided this
capability for some time. CMU’s ad-hockey was
designed explicitly to support node movement.8 GUI
network editors are of most benefit to novice users or
users running small simulations.

NAM BASICS
To animate network traffic in several ways, nam

interprets a trace file containing time-indexed network
events, as Figure 1 shows. Typically, an ns simulation
generates this trace, but nam can also use processing
data from a live network to produce a trace. Nam usu-
ally runs offline using traces stored on disk, but it can
also play traces from a running program through a
Unix pipe.

Visualization tools such as nam, a network animator that supports packet-
level animation and provides scenario-editing capabilities, make protocol
design and debugging easier.

Deborah
Estrin
Mark
Handley
John
Heidemann
Steven
McCanne
Ya Xu
Haobo Yu
The VINT Project

64 Computer

The nam trace file contains all information needed
for the animation—both on static network layout and
on dynamic events such as packet arrivals, departures,
and drops and link failures. The input file for wireless
networking simulations also includes information on
node location and movement.

Figure 2 shows a typical nam session. The main
window, at the top left, shows packet animations, with
nodes, network links, and packets flowing between
nodes or queued, waiting to be sent. For example, link
2-3 shows TCP data moving along the top and return
acknowledgment traffic moving along the bottom in

Figure 2. A typical nam session. The top-left window shows a packet animation for a
network, with monitors and statistics running across the bottom. The top-right window shows
TCP flows in the trace. The center-right window shows a time-sequence plot of a specific TCP
flow. The bottom-right window shows a zoomed view of the packet animation and a pop-up
query concerning link 2-3. The bottom-left window is the console for nam-wide operations.

the reverse direction. Packet color can show many
things; here blue and black packets represent flows
from different sources, and red packets are those car-
rying a congestion signal. Packets move from node to
node along links and queue up when links are full. For
example, a large queue near node 2 reflects the busy
link between nodes 2 and 3.

Under this network are several statistical sum-
maries. Monitor boxes show the parameters of pro-
tocols running on particular nodes. The ticks beneath
them show link utilization as a function of time. The
window at the bottom right of the figure zooms in on
part of the network.

The center-right window shows a protocol-specific
time-event graph of a particular flow on a given link.
In this case, the graph plots TCP sequence numbers
against time using different symbols to show data
packets, acknowledgments, and acknowledgments
that include explicit congestion information.

Designers can execute multiple copies of nam, even
driving them in lockstep. The ability to visualize the
output of more than one simulation trace file makes
side-by-side comparisons possible. These are especially
useful for investigating protocol sensitivity to input
parameters in the same simulation scenario.4

Packet animation
Nam’s core is packet animation. Figure 3 shows

three variants of the TCP protocol nam uses to send
data from Web servers on the right to clients on the
left. Animation allows the user to quickly see the sta-
tus of each part of the network—the top link is
severely congested and dropping packets; the middle
link is slightly busier than the bottom link—and
quickly compare algorithms—the middle variation
has one extra magenta packet, while the top version
sends many back-to-back packets. Nam lets users
adjust the animation speed and play it forward or
backward, making it easy to find and examine inter-
esting occurrences.

The first step in a new animation is displaying the
network topology. Nam has three different topology
layout mechanisms to accommodate different needs:

• Automatic. The default is an automatic layout
algorithm based on a spring-embedded model.9

The algorithm assigns attractive forces on all
links and repulsive forces between all nodes and
tries to achieve balance through iteration.
Automatic layout can produce reasonable lay-
outs of many networks without explicit user
guidance, but it may not produce satisfactory
results for complicated networks. If necessary,
users can manually adjust the resulting layout.
Figure 4 shows an automatic layout.

• Relative. For smaller topologies, relative layout is

Optional
filtering

Preprocessing

namns simulation
Packet animations

Protocol graphs

Network
data

Other
sources

Automatic layout
Relative layout
Wireless layout

TCP
SRM

Figure 1. Data flows into nam from network data or other sources after preprocessing
into the nam trace format. Optional filtering adds information to a nam trace, possibly
highlighting specific flows or generating additional statistics.

November 2000 65

Figure 3. Using packet animation in nam. Here nam is com-
paring three different TCP protocols with the same workload.
The different numbers of packets in flight and the packet loss
in the top variant represent variations in the three protocols.

to represent the state of a protocol instance at an end
node, and display agents as small labeled rectangles
attached to nodes.

Figure 4 shows one example of non-packet-level
animation—the topology of a portion of the Internet
multicast backbone as of 1998. To determine if
Mbone loss was primarily in the core network or the
edges, we measured loss rates for various links. The

possible. The user specifies the relative directions
of links—left, up, down—and nam uses the
directions to place nodes relative to each other.
Nam sets link length proportional to bandwidth
and delay. Relative layout works well for small
topologies and has the advantage that packet
movement rate is constant and consistent with
link delay and bandwidth. Relative layout’s dis-
advantages are that the user must specify the
directions of each link, not all networks have a
planar representation that satisfies delay con-
straints, and relative layout of a topology con-
taining different delays can result in very short
links. For example, the 10-Mbps, 1-ms delay
links on the left of Figure 3 are too short for
observing packet flow when shown at the same
scale as the 800-Kbps, 100-ms central link.

• Wireless. Wireless layout associates each node
with a physical location in a constrained area.
Each node’s 3D coordinate gives its position in
the area (though visualization currently uses only
two dimensions) and its velocity vector. Wireless
visualizations typically lack explicit links.

Once nam lays out the topology, packet animation
is straightforward. Trace events indicate when pack-
ets enter and leave links and queues. As the main win-
dow of Figure 2 shows, packets appear as rectangles
with arrows at the front, and queues as arrays of
squares. To identify source and destination pairs, users
can select packet colors based on codes set in the sim-
ulator or set during preprocessing. When queues fill,
packets literally drop, falling to the bottom of the dis-
play as small rolling squares.

One difficulty in implementing packet animation was
that some events that animation requires are not pre-
sent in the trace file. We wanted the trace file to be as
explicit as possible, but some trace events are anima-
tion-specific and must be dynamically constructed. One
example is identifying when a dropped packet leaves
the screen, which the simulator would not know.

To focus on interesting parts of the simulation, users
can control the animation playback rate. VCR-like
buttons allow forward and backward playback, and
a slider sets the playback rate. Users can skip simula-
tion dead time or annotate interesting trace events so
they can jump to them. The animation window is
interactive, letting the user click on packets, links, and
nodes to bring up pertinent information, including
statistics.

Other visualization methods
In addition to packet animation, we experimented

with other ways to visualize information. Users can
specify node color and shape to indicate state such as
membership in a multicast group, use protocol agents

Figure 4. Link animation in a visualization of Internet multi-
cast-backbone loss rates.

66 Computer

figure shows different loss rates in colors that change
over time.

We have also found nam useful for application-level
visualization. In Figure 5 we use nam to visualize cache-
coherence algorithms in a hierarchical Web cache.
Shapes show node types—the client and server are hexa-
gons, and caches are circles. Node color shows cache
status—valid or out of date. Rings around nodes show
algorithm status—for example, refreshing a cache.

Simulation details
Nam’s animation component displays only a subset

of the simulation details present in the trace output.
Other nam components handle additional informa-
tion, such as packet headers or protocol state vari-
ables. The statistics component provides three ways to
display this additional information:

• Clicking on any of the displayed objects—for exam-
ple, packets and protocol agents—brings up a pop-
up panel showing object-specific information.

• Clicking on a link brings up a selection panel, a
special type of pop-up that allows the user to
open a new pane (the black stripes in Figure 1) to
display bandwidth utilization or packet loss.

• Pop-up monitors display object-specific infor-
mation. Monitors remain associated with an
object until the user explicitly removes them or
until the trace indicates that the object is gone.
These monitors are displayed at the bottom of
nam’s main window, as illustrated in Figure 1.

Figure 5. Visualization of applications with nam. The shapes
represent node types—the hexagons are the client and server
and the circles are caches. The node color shows the cache
status; rings around nodes show algorithm status.

Protocol-specific graphs
Nam can also represent protocol-specific informa-

tion with time-event graphs, which plot against events
such as an advancing sequence number or message
transmission. These graphs have long been used to
understand TCP behavior and more recently to under-
stand timer interaction in scalable reliable multicasts.4

Currently, nam supports protocol graphs for TCP
and SRM, but we plan to add a pluggable API to sup-
port other, more-generic protocols. Figure 6 shows
time-event graphs for SRM (top right) and TCP (bot-
tom center and bottom right). When a graph first
comes up, a nam filter scans the trace file to extract the
relevant information for a specific flow or protocol.

The advantage of integrating these views with nam
is that it synchronizes graphs and packet animations.
Moving a time slider or clicking on an interesting
event in any view will update the time in all views. To
help users coordinate events, nam displays each trace
event in a consistent way—through color or shape-
across views.

Scenario creation and editing
We use nam in two complementary ways to assist

scenario creation:

• With the scenario input facility that we recently
added to nam, users can apply a traditional draw-
ing approach to add nodes, links, and protocol
agents. Nam then saves this scenario as an ns sim-
ulation script (in Tcl), which the simulator will
process.

• The ns scenario generator uses nam to visualize
large scenario topologies, using tools such as
Georgia Tech’s ITM10 to construct these scenarios.
Nam uses automatic layout to present the topol-
ogy to the user for acceptance or regeneration.

Nam’s ability to create graphical scenarios is appro-
priate for small scenarios with a few nodes and links.
We have been pleased with the results of using nam
to produce scripts for these cases while starting with
scripts directly for larger, more complex, or automated
simulations. For our target audience of protocol
designers, learning Tcl syntax requires minimal effort,
and it is more than offset by the finer control and abil-
ity to use looping constructs in place of repeated man-
ual point-and-click operations.

N am development is ongoing, with a number of
incremental improvements under consideration
or planned. For example, we plan to improve

scenario-editing capabilities and add support for
entering mobile node tracks.

Two major focuses of future work remain:

November 2000 67

Acknowledgments
This research is supported by the US Defense

Advanced Research Projects Agency through the
VINT project at Lawrence Berkeley Laboratory under
DARPA order E243, at the University of Southern
California’s Information Sciences Institute under
DARPA grant ABT63-96-C-0054, and at Xerox
PARC under DARPA grant DABT63-96-C-0105.
Steve McCanne wrote the original version of nam in
1990 at Lawrence Berkeley National Laboratory.
Marylou Orayani made substantial contributions to
nam as part of her work at Berkeley in 1995 and 1996.
Since 1997, the VINT research project has maintained
and enhanced nam. We especially thank Elan Amir,
Lee Breslau, Kevin Fall, Sally Floyd, Ahmed Helmy,
Polly Huang, Scott Shenker, and Christos Papa-
dopoulos for their input into nam and this article.

• We would like to make nam easier to extend, pro-
viding better internal APIs to allow users to add
custom controls to the output and to control object
rendering. For example, one application would
allow users to interactively control node colors to
indicate application groups or characteristics.

• We are just beginning to understand how to visu-
alize large-scale networks (more than 100 nodes),
and we intend to devote more work to this area.

Network protocol visualization is easy to dismiss
because its contributions to protocol development are
indirect. More than a tool for fancy demos, visualiza-
tion through nam can substantially ease protocol
debugging and help developers understand dynamic
behavior. For these reasons, a growing number of
researchers are using nam in their work. ✸

Figure 6. Nam provides time-event graphs, which aid specific investigations. The bottom center and bottom right windows show TCP time-sequence
number graphs. The top right window shows a plot of SRM events against time.

68 Computer

References
1. L. Breslau et al., “Advances in Network Simulation,”

Computer, May 2000, pp. 59-67.
2. T.J. Shepard, TCP Packet Trace Analysis, Tech. Report

494, Laboratory of Computer Science, Massachusetts
Inst. of Technology, Cambridge, Mass., 1991.

3. L.S. Brakmo, S.W. O’Malley, and L.L. Peterson, “TCP
Vegas: New Techniques for Congestion Detection and
Avoidance,” Proc. ACM SIGCOMM 93, ACM Press,
New York, pp. 24-35.

4. S. Floyd et al., “A Reliable Multicast Framework for
Lightweight Sessions and Application-Level Framing,”
ACM/IEEE Trans. Networking, Dec. 1997, pp. 784-
803.

5. G.G. Robertson, S.K. Card, and J.D. MacKinlay,
“Information Visualization Using 3D Interactive Ani-
mation,” Comm. ACM, Apr. 1993, pp. 56-71.

6. X.W. Huang, R. Sharma, and S. Keshav, “The Entrapid
Protocol Development Environment,” Proc. IEEE Info-
com, 1999, pp. 1107-1115.

7. R. Bagrodia et al., “Parsec: A Parallel Simulation Envi-
ronment for Complex Systems,” Computer, Oct. 1998,
pp. 77-85.

8. The CMU Monarch Project, “The CMU Monarch Pro-
ject’s ad-hockey Visualization Tool for ns Scenario and

Trace Files,” Carnegie Mellon Univ., Pittsburgh, Pa.,
1998.

9. T. Fruchterman and E. Reingold, “Graph Drawing by
Force-Directed Placement,” Software Practice and Expe-
rience, Nov. 1991, pp. 1129-1164.

10. K. Calvert, M. Doar, and E.W. Zegura, “Modeling Inter-
net Topology,” IEEE Comm. Magazine, June 1997, pp.
160-163.

Deborah Estrin is a professor of computer science at
the University of California, Los Angeles. Her net-
working research has included multicast protocols and
network simulation and visualization and currently
focuses on networking small devices and sensor net-
working. She has a PhD in computer science from
MIT. Contact her at destrin@cs.ucla.edu.

Mark Handley is a computer scientist at the AT&T
Center for Internet Research at ICSI (ACIRI), where
his research examines congestion control and reliable
multicast. He has a PhD in computer science from
University College, London. Contact him at mjh@
aciri.org.

John Heidemann is a computer scientist at the Infor-
mation Sciences Institute, University of Southern Cal-
ifornia. His research interests include network proto-
cols, simulation and traffic modeling, and embedded
networking. He has a PhD in computer science from
UCLA. Contact him at johnh@isi.edu.

Steven McCanne is CTO of FastForward Networks.
His research interests include reliable multicast,
Mbone multimedia tools, and layered video coding.
He has a PhD in computer science from the Univer-
sity of California, Berkeley. Contact him at mccanne@
ffnet.com.

Ya Xu is a member of the technical staff at Cisco Sys-
tems. His research interests include networking pro-
tocols and network simulation. He has an MS in
computer science from the University of Southern Cal-
ifornia, where he is a PhD candidate. Contact him at
yaxu@isi.edu.

Haobo Yu is a computer scientist at Packet Design. His
research interests include Web cache consistency pro-
tocols and application-level routing. He has a PhD in
computer science from the University of Southern Cal-
ifornia. Contact him at haoboy@packetdesign.com.

Distributed Systems Online

cluster computing

distributed agents

distributed databases

distributed multimedia

grid computing

middleware

mobile & wireless

operating systems

real-time systems

security

c o m p u t e r . o r g / d s o n l i n e

I E E E

