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Abstract— Providing approximate max-min fair bandwidth
allocation among flows within a network or at a single router has
been an important research problem. In this paper, we study the
space complexity of fairness algorithms, and the communication
complexity of distributed global fairness algorithms. We show
that in order to enforce max-min fairness with bounded errors, a
router must maintain per-flow state. Then we present a practical
edge-marking based architecture to demonstrate the enforcement
of approximate global max-min fairness for representative sce-
narios with multiple bottlenecks and non-responsive traffic. We
validate our architecture using packet level simulations.

I. INTRODUCTION

Fair bandwidth allocation among the different competing
flows in the best effort Internet has been a traditional, well
studied problem in the networking research community. As of
today, TCP, which is a social, responsive, Additive-Increase
Multiplicative-Decrease (AIMD) congestion control protocol,
has been the dominant transport layer protocol in the Internet.
However, recent studies have shown that non-congestion-
reactive traffic is on the rise [1]. Resource misappropriation
by high-bandwidth, non congestion-responsive or unfair flows
can lead to degraded performance of congestion-reactive flows,
and add to network congestion [1]. This threat is more
pronounced in the face of growing UDP voice and video traffic
which can quickly squeeze out other TCP( [2], [3]) flows,
and can even lead to a congestion collapse[4] in the Internet.
Furthermore, with the ever increasing demand for bandwidth,
we may not enjoy an over-provisioned best-effort Internet for
too long. Hence, mechanisms to allocate bandwidth fairly
among users and punishing of non-responsive flows, who
deviate substantially from their fair bandwidth share, is crucial
for better performance and robustness in the Internet.

Fair bandwidth allocation among flows can be imposed
either locally or globally. Local fairness schemes aim to
provide fairness among flows at a single router, while global
fairness deals with providing network-wide fairness among
all the flows in the network. Such fairness schemes can be
implemented at routers in the form of either Active Queue
Management (AQM) algorithms or scheduling algorithms.
There are various notions of fairness [5]. In this paper we
restrict ourselves to the well accepted notion of max-min
fairness. Intuitively, a bandwidth allocation is max-min fair
if it is not possible to give any connection or flow more

bandwidth without denying an already poorer flow. Thus, max-
min fairness maximizes the poorest recipient.

It is important to study the complexity of max-min fair
bandwidth allocation (for both local and global fairness) algo-
rithms. Such complexity has three components: time, space
and communication. Time complexity has been studied in
great detail for a long time (some recent interesting papers
are [6], [7]). In this paper, we are primarily concerned with
space and communication complexity. Note that communica-
tion complexity is relevant to global fairness only. It has been
conjectured that it might be possible to provide approximate
max-min fairness with low space complexity. We show that
in general it is not possible to provide approximate max-min
fairness, even locally, with low space complexity, and bounded
errors. Furthermore, we conjecture that for global fairness,
both the space and communication complexity may be high.
However, we show that, in practice, it is possible to design
schemes that approximate global fairness for certain scenarios
which we consider.

As mentioned before, there is a need to provide fairness at
routers. Locally fair schemes, while important, are insufficient
to ensure high network wide utilization and simultaneously
provide fairness among competing flows in the network. For
example, unresponsive flows receiving their locally fair share
of bandwidth at a link, will waste bandwidth if they are later
bottlenecked at downstream nodes. Thus, it is also important
to find solutions that impose network-wide fair bandwidth
allocations. Note that if all end-points followed a social,
responsive congestion control, and routers enforced local fair-
ness, it would lead to high utilization as well as a globally-
fair bandwidth allocation. Unfortunately, it is unreasonable to
assume that all traffic will be congestion reactive. Therefore
locally fair schemes such as fair queueing [8] by themselves
cannot provide global or network-wide fairness.

Providing global max-min fairness has been a well explored
topic. The centralized algorithm is well-known [9]. Ideally we
desire a global fairness scheme that is lightweight, requires
routers (both at the core as well as at the edge of the network)
to maintain low state and communication complexity, and
impose fair bandwidth allocations with bounded errors and
high accuracy. As we will see later, such low complexity
schemes are not theoretically possible, in general, due to the
lower bounds that presented later in this paper. However,



we also show that lightweight schemes might be devised
that approximate globally fair bandwidth allocation in certain
scenarios if strict fairness bounds are not desired. For example,
it may be possible to build low-state fairness schemes, e.g.
when most flows are TCP friendly and there are very few
misbehaving flows.

A. Our Contributions

Our contribution can be divided into the following two
categories:

• Lower bounds: In this paper, we present the first work
on lower bounds for the state needed by routers to
provide approximate-min fairness. We show that in order
to provide approximate max-min fairness with bounded
errors among n flows, a router needs to maintain Ω(n)
state. Then we conjecture that the communication com-
plexity required to provide global fairness is equivalent
to routers maintaining network-wide state. These negative
results inhibit, in theory, the design of simple low-state
schemes for fairness in the general case. However, as
mentioned earlier, these results do not necessarily inhibit
the implementation of specific algorithms for a restricted
class of scenarios.

• Practical implementation: We study how global fairness
can be imposed in practice, for certain representative
scenarios using a lightweight marking based architecture.
A brief overview of this architecture has been presented,
in a short abstract, in [10]. In this paper we evaluate
our architecture in terms of space and communication
complexity.

The outline of this paper is as follows. First we present a
summary of the related work in Section II. Then we present
our lower bound results in Section III. This is followed by
our LWD-fair marking architecture in Section IV. Finally, we
conclude in Section V.

II. RELATED WORK

Our work leverages techniques from different related re-
search areas such as queueing, fairness, scheduling, hashing,
statistical sampling and traffic marking. In this section, we
will try to highlight previous work that is directly relevant to
our problem of controlling misbehaving flows.
AQM: Fair Queueing (FQ) [8] at a router provides local
fairness among all the flows that enter that router. However,
this requires us to maintain per-flow state. A good scheme to
approximate FQ have been the Core Stateless Fair Queueing
architecture (CSFQ) [11], which uses flow rates embedded in
packet headers. CHOKe [12] is another stateless AQM, that
uses random sampling of packet queues. FRED [13] is an en-
hancement to RED to ensure fair buffer sharing by maintaining
state for active flows at the router. Ott et al. [14] proposed
SRED, which identifies candidates for high bandwidth flows
from a cache of recently seen flows. RED-PD [15] uses a list of
previous RED packet drops to identify misbehaving flows and
control them using different drop probabilities. As mentioned
earlier, none of the above can provide global fairness.

Packet Marking: Traffic marking has been an essential com-
ponent of the Diffserv [16], [17] architecture too. Markers can
be classified into two groups: per-flow markers and aggregate
markers. Many sophisticated markers [18], [19] are per-flow
based and thus not scalable, or only address TCP flows. Most
current aggregate traffic markers [20], [21], [22] do not provide
fairness within an aggregate. On the other hand, our CAM
marker is stateless and provides approximate max-min fairness
in terms of IN packets. A more complete review of the marking
techniques can be found in [23].
Fairness and Admission Control: The problem of providing
fairness has been a well-researched topic. For a quick introduc-
tion to the generalized issues in fairness, see [5]. Kelley [24]
has been a pioneer in proportional fairness. His optimization
framework involves end agents bidding with prices and the
network charging the users according to all the bids. In this
framework, the user optimum coincides with the system and
the network optimum. Several other groups have built upon
this framework. Our work is different from this entire genre
of research because unlike them, we do not assume cooperative
end point protocols. Also, the above scheme is stateful, unlike
ours.

Charny et al. [25] have presented a distributed algorithm
for providing max-min fair allocations in packet networks.
However, it requires per-flow state at all the routers. Recently,
Bhatnagar et al. [26] show how to compute approximate
max-min fair allocation among flow groups. Their scheme
requires a connection oriented model with predetermined path
information for flows, in addition to per-flow state at edge
nodes. Our scheme is different from the above works in several
ways. First, we do not require per-flow state at the edges,
or a connection-oriented paradigm. Also, since our scheme is
marking based as opposed to being admission control based,
we can ensure near 100% link utilizations.
Low State: The tools behind our low state claims are based
upon the recent work done in streaming databases [27] and
counting algorithms [28]. Our architecture needs us to quickly
compute the approximate number of flows and perform flow-
set intersections efficiently. at a given router. [28] propose
a low-state family of bitmap algorithms for this purpose
(which is what we use for our schemes). Recently, there
has been a keen interest in the database community in the
problems that can be clustered under the following banner:
Data processing over streams. A good survey can be found in
a recent paper [27].

Counting approximate number of flow is the same as
calculating the approximate frequency moment F0 of a data
stream. In [29], Alon et al. showed that there exists a lower
bound of Ω(n) space, where n is the number of flows at
the router. In [30], the authors present three approximate
algorithms to solve the same problem. For example, in their
simplest algorithm, they show that if ε is the allowed error, F0

can be calculated in O( 1
ε2 × log n) space and time dominated

by O(log n). This means that one can approximately calculate
the approximate number of flows with O(log n) space for a
chosen accuracy parameter.
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Fig. 1. CHOKe fails with large number of misbehaving flows

III. LOWER BOUNDS

In this section, we prove fundamental lower bounds for
the space complexity required by a router for providing local
fairness. We show that a router needs per-flow state to enforce
approximate local fairness with low bounded error. The outline
of the section is as follows. First we present some preliminaries
in Section III-B. In Section III-C, we show that for any AQM
that has a constant, but possibly different, drop rate for each
flow, every randomized algorithm must maintain Ω(n) state
in order to provide approximate max-min fairness. Then we
show the same result for any sliding window based algorithm
in Section III-D.

A. Intuition

First, let us demonstrate the intuition behind the claims
made in this section by considering the performance of sample
fair AQM mechanism in certain scenarios. Consider a simple
bottleneck link of capacity 1Mbps, and propagation delay of
10ms. Assume that there are n well-behaved (good) and n
misbehaving (bad) flows passing through this link. Ideally, the
fair share should be 1

2n Mbps. The good flows send at a rate
equal to the fair share while the bad flows send at a much
higher rate. Consider an implementation of CHOKe in NS2.
We simulate the above scenario with a buffer size of 50 packets
of 1000 bytes each, which is more than the bandwidth delay
product. The results are shown in Figure 1. We vary n from
10 to 200. Thus, the total number of flows varies from 20 to
400. In this figure, we can clearly see that as we increase n,
the accuracy of CHOKe decreases drastically. The standard
deviation of bandwidth of the bad flows become larger than
the bandwidth itself. The bandwidth of the good flows become
very small. For example, for n = 100, ideal fair share gives
us 5Kbps. However, the good flows get 0.3Kbps and the bad
flows get 8.7Kbps. Thus, CHOKe cannot impose approximate
max-min fairness for the above scenario.

We believe that the trends shown in the above experiment
are not unique to CHOKe. In fact we prove that it is not

possible for any low-state AQM scheme to impose approximate
fairness with low error.

B. Preliminaries

In this section, we define our notation used in our analysis.
Assume a link l with capacity C which has n connections or
flows going through it. Let each connection offer λi amount of
traffic through the link, and let µi be its goodput. A bandwidth
allocation is max-min fair if it is feasible (i.e.

∑n
i=1 µi ≤ C),

and µi cannot be increased while still maintaining feasibility,
without decreasing µj for some flow j for which j < i. Let
R =

∑n
i=1 λi. If R > C, then we can relate the fair rate, f ,

of the link l as the unique solution to the following equation:
n

∑

i=1

min (f, λi) = C

In the max-min fair solution, each flow i gets a goodput of
µi = min (f, λi).

We now define a term called ε-fairness. An algorithm for
bandwidth allocation among n flows is ε-fair if the bandwidth
allocated to flow i is related to its offered load λi, the error
fraction ε, and its max-min fair rate f by: (1−ε) min (λi, f) ≤
µi ≤ (1 + ε) min (λi, f). Unless stated otherwise, we use ε-
fairness and approximate max-min fairness interchangeably.

Information Theory: We now review some basic back-
ground in Information Theory. For a good introduction, the
reader is referred to [31]. The entropy of a random variable
X is defined by

H(X) = −
∑

x

p(x) log p(x)

Intuitively, for our purposes, it is the minimum amount of
information required to represent the random variable X .
Shannon’s channel coding theorem [31] states that the min-
imum space that one needs to encode is bounded by H(X) in
the absence of error. For example consider an n-bit string with
equal number of 0s and 1s chosen uniformly at random. Define
a random variable X to denote the configuration of the above
n-bit string chosen uniformly at random. Then the entropy
H(X) is given by log Cn

n/2 = Ω(n). Thus, the minimum
amount of space required to represent this string is Ω(n). We
will use this fact to prove our lower bounds in Section III-D.

C. Constant Drop Rates

In this section, we assume that an AQM mechanism con-
verges to drop rates that are constant for each flow, assuming
constant or Poisson traffic arrivals. We show that such a
mechanism must maintain Ω(n) state to enforce bounded
fairness guarantees.

Theorem 1: Any algorithm that imposes max-min fairness
among n flows by converging to constant drop probabilities
for each flow within any constant relative error ε takes Ω(n)
space.

Proof: Assume there are 2n flows going through a router,
and we need g(n) space at the router, where g(n) is not
Ω(n). Then the total number of distinct functions that can
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be described using g(n) space is 2g(n). Now, assume that we
have a scenario where there are n good flows and n bad flows.
The good flows send at the fair rate, f , and the bad flows send
traffic at a much higher rate of kf , where k > 1. Hence the
number of configurations that the router needs to handle in
order to impose max-min fairness using these flows is given
by C2n

n . Now, in order for the flows to get max-min fair share,
the router needs to map the configuration to drop probabilities
so that the bad flows get restricted to the fair share. Hence the
router needs to use some drop function in order to do this. As
we saw before, the number of drop functions can only be 2g(n)

while the total number of configurations is at least C2n
n . If

C2n
n > 2g(n), then there exists at least two configurations that

get mapped to the same drop function (by the familiar Pigeon
Hole Principle). In that case, the router will not be able to
differentiate between those two configurations. Thus, there will
be at least one flow which will not get its correct fair share.
Hence, 2g(n) ≥ C2n

n . This implies g(n) = log (C2n
n ) = Ω(n).

D. Sliding Window

In this section, we extend the lower bound presented in the
previous subsection to AQMs that are window based. That is,
we show that any algorithm that imposes approximate max-
min fairness with guaranteed error bounds within a window
must maintain Ω(n) state.

We have the following theorem:
Theorem 2: Any algorithm that imposes ε-fairness among

packets of n flows in a given window size W (i.e. provides
fairness within every set of W consecutive packets) to within
any constant relative error ε < 1

8 takes Ω(n) space.
Proof: Consider a sliding window of size W , and

an algorithm, A, that provides ε-fairness within this sliding
window. We provide a proof by contradiction. Assume A
requires g(n) state, where g(n) is not Ω(n). Then we construct
an encoder/decoder combination to transmit an n-bit string
with an equal number of zeros and one’s, using g(n) bits.
This violates information theory bounds for lossless coding.
Encoder Construction:

We encode the above mentioned n-bit string as follows. If
the ith bit of the n-bit string is 0, we create a flow with rate
r pkts/s (we call it a good flow), and if the ith bit is 1, we
create a flow with rate kr pkts/s (such a flow will be called
a bad flow). Our construction uses constant sized packets. We
choose k to be much greater than 2. The total sending rate of
all the flows is R = nr(k+1)

2 pkts/s. The window W therefore
corresponds to ∆ = W

R seconds of the aggregate flow rate
R. Let x = r∆. Thus, every window of W packets contains
exactly x = r∆ packets of each of the n/2 good flows and

kx = kr∆ packets of each of the n/2 bad flows. Set the
capacity of the black box to be C = 2nr pkts/sec. Thus,
among the window W of packets, only C∆ = 2nx packets
are accepted, and the rest are dropped. The max-min fair rate
f of the router therefore corresponds to 3x accepted packets
per flow within the window W . Now let us insert a total of
W packets from these flows into A in a weighted round robin
fashion, with weights 1 and k corresponding to good and bad
flows respectively. The state of the algorithm, is sent as the
encoded state. Thus the size of the code sent by the encoder
is g(n), which is not Ω(n) by assumption.
Decoder Construction: We make n copies of the algorithm
A’s state (received from the encoder) for decoding the n bits.
For the ith copy, we decode bit i as follows. We send x new
packets labeled i through A. Then we observe how many of
these packets are accepted, and decide the value of the bit
accordingly.

Consider the last W packets seen at the encoder (before
the x packets are inserted at the decoder, as above). Let us
partition these W packets into two sets, M and P , such that
|M | = x packets and |P | = W − x packets. Also, let the set
of x new packets sent at the decoder be denoted by Q. By our
assumption, the algorithm A provides ε-fairness within every
window of W consecutive packets seen. In particular, this is
true for each of the two windows formed by the consecutive
sets MP and PQ, where MP = M ∪ P and PQ = P ∪ Q.
This is shown in Figure 2. Consider the window MP , for
example. Note that the fair share of a good flow within MP
is x.
Flow i is bad: We will find out the maximum number of
accepted packets of flow i in Q denoted by maxQi. Consider
the window MP . Now, the ideal fair share of this flow in the
window MP is given by

FSbad
MP =

2nx − n
2 x

n
2

= 3x.

Also, the maximum possible number of packets of i accepted
in M can be obtained by assuming that all packets of flow i
in M are accepted; this is given by

maxMbad
i =

(

k

k + 1

) (

x
n
2

)

=
2kx

(k + 1)n
.

Therefore the minimum possible number of accepted packets
of i in P , minPbad

i is given by

minPbad
i = FSbad

MP(1−ε)−maxMbad
i = 3x(1−ε)−

2kx

(k + 1)n
.

Now consider the window PQ. The ideal fair share of this
flow in the window PQ is given by

FSbad
PQ =

2nx − W−x
k+1

n
2

= 3x +
2x

(k + 1)n
.

Therefore, maxQi is given by the following equation:

maxQbad
i = FSbad

PQ (1+ε)−minPbad
i = 6xε+

2xε

(k + 1)n
+

2x

n
.



Flow i is good: In this case, we will find out the minimum
possible number of accepted packets of flow i in Q denoted by
minQgood

i . Consider the window PQ The maximum possible
number of accepted packets of i in P can be obtained by
assuming that all packets of flow i in P are accepted; this is
given by

maxPgood
i =

W − x

(k + 1)n
2

.

The ideal fair share of this flow in the window PQ is given
by

FSgood
PQ = x +

W − x

(k + 1)n
2

.

Therefore, minQgood
i is given by the following equation:

minQgood
i = FSgood

PQ (1 − ε) − maxPgood
i

= x(1 − ε) −
(W − x)ε

(k + 1)n
2

= x − 2xε +
2xε

(k + 1)n
.

Now, if minQgood
i > maxQbad

i , then we can clearly decode
flow i as good or bad, based on the number packets that are
accepted out of the x packets in Q. This simplifies to the
following condition

x − 2xε +
2xε

n(k + 1)
> 6xε +

2x

n
+

2xε

(k + 1)n
,

or 1−2/n > 8ε. Thus, for large n, if ε < 1/8, we can decode
all the n bits without error. This violates the lower bounds in
coding in the following way. The size of the minimum code is
given by the entropy of the system. Now the entropy of the n-
bit string is given by log Cn

n/2 = Ω(n). But by assumption, the
code size is g(n), which is not Ω(n). This is a contradiction.

Note that we used very simple estimates for parameters such
as x and k. By manipulating the parameters, it is possible to
improve the bounds on ε.

From the above theorem, it is easy to see the following
corollary:

Corollary 1: Any algorithm that for globally max-min fair
bandwidth allocation needs Ω(ni) state at each individual
router, where ni is the number of flows that pass through
router i in the network.

In a globally max-min fair algorithm, a router will need to
communicate certain amount of information to other routers.
A natural question that follows is how much routers should
communicate in addition to maintaining Ω(ni) state. We
conjecture that routers need to communicate a large amount of
information. In the worst case, it may be

⋃

ni amount of infor-
mation. This is equivalent to routers maintaining global state.
The intuition comes from a recent result in data streams [32]
which says that set operations such as difference or union of
two data streams A, B require at least Ω( |AUB|

|AopB| ), where op is

either difference or intersection. Thus we have the following
conjecture:

Conjecture 1: Any algorithm that for globally max-min fair
bandwidth allocation needs to communicate Ω(

⋃

i ni) state at
each individual router, where ni is the number of flows that
pass through router i in the network.

E. Discussions

In this section, we proved that in order for any algorithm
to impose max-min fairness with high accuracy, it needs to
maintain per-flow state. This might seem counter intuitive
with the presence of several fair AQMs such as CHOKe, for
example. However, we must note that all the previous work
on low-state AQMs have considered a small number of flows
(less than a thousand). Most AQMs have not done a study
of how their accuracy drops when the state maintained by
the routers are less in comparison to the number of flows. In
contrast, our result does not characterize any particular AQM.
The result shows a lower bound by considering an adversarial
scenario where every algorithm will fail. Thus, it is fair to
ask questions such as: whether there are similar lower bounds
for low state fair AQMs that are only designed for practical
scenarios.

Although we prove that, in general, per-flow state complex-
ity for imposing fairness with bounded errors is necessary,
it is possible to have practical implementations that provide
reasonable fair bandwidth allocations for practical scenarios.
We will show one such fairness architecture in the next section.

IV. LOW-STATE ENFORCEMENT

The pessimistic lower bounds presented in the previous
section are for enforcing max-min fairness with low error
bounds. In practice, we can do better than the above results if
we relax our strict error requirements. In this section, we will
show one simple mechanism to obtain approximate global fair-
ness without drastically changing the network infrastructure.
We present our lightweight, low-state, packet-marking based
(LWD-fair) architecture to impose fairness. A preliminary
version of this architecture has been presented, as a short
abstract, in [10]. Here we expand upon the abstract and present
a detailed evaluation of the architecture.

A. Our Approach

The core components of our architecture are a set of traffic
markers at the edges (based on low state or stateless fair
AQMs) that mark packets in an approximate fair fashion (in
practice), and a distributed marking algorithm that utilizes
these AQM-based markers to classify packets into two classes,
IN and OUT, using low-state feedback obtained from the
congested routers (with the help of summary data structures
such as bit vectors or sketches) to allocate approximately
global max-min fair IN token rates to all the flows in a net-
work. During congestion, the congested router uses RIO (RED
IN/OUT) as the AQM policy and preferentially drops the OUT
packets. See Fig. 3 for a summary of our architecXSture.



To design efficient traffic markers which mark flows of an
aggregate fairly, we leverage the queueing and dropping poli-
cies of existing low-state approximately fair AQM algorithms,
and we call these aggregate packet markers AQM-based
markers. These markers mimic well-explored, approximately
fair AQM schemes. Note that as we have just proved, it is not
possible, in theory, to design fairness algorithms with low-
state and bounded errors. However, the fair AQMs, that form
the basis of our markers, have been shown, empirically, to
perform adequately for the scenarios we consider in this paper.
It was previously shown [23] that the problem of fair token
distribution of IN tokens among flows at a marker among an
aggregate of flows, using a token bucket traffic specification,
can be viewed as being equivalent to fair buffer management
and scheduling of packets at a queue of the corresponding
AQM policy. For example, we adapt CHOKe [12] to design a
marker called CAM (CHOKed Aggregate Marker).

When a link is close to being congested, the router (for
the link) starts inserting the flow id of all the packets it sees
into a summary data structure (DS). For example, we could
set the bit of a bit-vector that the flow hashes into or update
a sketch [27]. On congestion, the congested router sends the
DS (e.g. bit vector) as well as its bandwidth to all the ingress
points in the network. It obtains the DS from all the congested
links and calculates the approximate globally fair marking
rate corresponding to each congested link as descrribed in
Algorithm 1. We design a general purpose architecture that
works independent of the particular data structure used. We
can leverage flow summary data structures that need at most
poly − log n space [33], [28]. However, using such data
structures may not guarantee strict bounds on the fair rate
obtained. Using our LWD-fair algorithm, each packet is then
marked with a target rate that is the minimum of the fair
target rates for all the links that the packet traverses through
(such membership information is obtained from the summary
data structures we use). Each edge router has one AQM based
marker [23] (CAM, which is based on CHOKe, for example)
for each bottleneck. Thus, the packet marking is performed
by the marker for the bottleneck corresponding to the lowest
target rate seen by the flow.

B. LWD-fair marker

In this section, we describe our LWD-Fair algorithm to
obtain a globally fair distribution of IN tokens among flows.
Intuitively, our LWD-fair marker is similar to that presented in
Bertsekas et.al. [9] for calculating globally max-min fair rates.
However, using summary data structures such as sketches and
bitmaps [28], we may not need to keep per-flow state infor-
mation as in traditional fairness calculation algorithms. The
LWD-fair algorithm iterates over all the bottleneck markers
by choosing the most congested bottleneck first and fixing its
fair marking rate, and then adjusting the data structures for
other bottlenecks.

The basic foundation of the algorithm is as follows: At each
iteration, the bottleneck-link L with the smallest local fair rate
is chosen and its marking rate fixed. The remaining links’
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Fig. 3. LWD-fair algorithm and our marking framework

available token capacity then have to be reduced depending
on how many flows they have in common with Link L.When
all bottleneck-links have been covered, their marking-rates
corresponding to globally max-min fair bandwidth allocation.
To make our algorithm independent of the data structures used
for flow information feedback, we assume that feedback from
all bottleneck-ed links l is received by summary data structures
DS[l] containing information about the flows at those links.
All we expect is that these summary data structures can
support five set operations: Cardinality, Intersection, Union,
Set Difference, and Set Membership.

Algorithm 1: LWD-Fair Algorithm
Data : local: edge’s incoming link;
Markerrate[i]: tokenbucket rate for bottleneck i’s marker;
Marker[i]: tokenbucket marker for bottleneck i;
DS[i]: flow summary received from bottleneck i;
Cardinality(DS[i]): num of flows calculated from summary DS[i] for bottleneck i;
Bw[i]: link bandwidth of bottleneck i;
M : set of bottleneck links that sent feedback;
P : temporary flow datastructure initially empty;
N[i]: initialized to Cardinality(DS[i]);
Intersect(DS[i], DS[j]): datastructure containing the intersection of flows of bottlenecks i and j);
Union(DS[i], DS[j]): datastructure containing the union of flows belonging to bottlenecks i and j);
Difference(DS[i], DS[j]) datastructure containing the set difference of flows belonging to
bottlenecks i and j;
Member(f, DS[i]): boolean variable that is true if flow f passes through bottleneck i;
if event == new summary-datastructure feedback then

cnt=0;
while M is not empty do

foreach i such that i is in M do

est rate[i] = Bw[i]
N[i]

;

tightlink = link s.t. est rate[link] is min in M;
fairrate[tightlink]=est rate[tightlink];
remove tightlink from M;
P = Union(P, DS[tightlink]) //add flows of tightlink to P;
foreach j in M do

temp =;
cardinality(Difference(Intersect(DS[tightlink], DS[j]), P ));
Bw[j] = Bw[j] − temp ∗ fairrate[tlink];
N[j] = N[j] − temp;

cnt++;
Markerrate[i] =
Cardinality(Intersect(DS[local], DS[i])) ∗ fairrate[i]

if event == recvd new pkt(p) then
MarkerSet = All links l in M such that Member(p,DS[l])=true;
MarkerBottleneck = m ∈ Markerset such that fairrate[m] is minimum among all links in MarkerSet;
Mark(p,Marker[m]);



C. Low State

It may not scalable for a congested link to identify,
store and transmit all its active flow-id’s during congestion.
By using summary data structures, such as multi-resolution
bitmaps [28], [34], from the congested routers instead of
per-flow information, our LWD-fair algorithm can reduce the
state and communication required in the centralized global
max-min algorithm. However, the choice of the data structure
dictates the accuracy of the algorithm. We therefore maintain
a summary data structure per link at each router, which
requires low update time per arriving packet (for example,
each packet is hashed on its flow-id to update a single bit in
the bitmap [34], [28]).

For example, Multi-resolution bitmaps are an extension of
direct bitmaps that rely on updating a bit in a hash table
for each packet. If N is number of flows, and ε is allowed
error, the number of bits to store flow information in this DS
= O( logNε2

ε2 ). Using different sampling factors for different
areas of the bitmap, Varghese et.al. [28], [34] show that they
can significantly improve on the accuracy of direct bitmaps
without much extra memory requirements. They also show that
using multi-resolution bitmaps with 8k bits, average errors for
counting up to 1000000 flows are only 3%. However, these
bitmaps also introduce errors especially in set operations. A
direct bitmap, on the other hand, is simple, more accurate, than
that of a multi-resolution bitmap; howeverm, it requires more
space to implement. Thus, the accuracy depends on the amount
of state required. The choice of the summary DS dictates
the tradeoffs in errors versus the state and communication
complexity required.

D. Signaling Overheads

In this section, we discuss the signalling overheads for
the proposed feedback information generated by bottleneck
routers, that is needed by our LWD-fair algorithm. By com-
paring the bandwidth estimates of the feedback used in our
scheme versus OSPF overheads for a given network topology,
we argue that the bandwidth overheads of our scheme is not
significant.

We first quantify the overhead of the LWD-fair algorithm in
a general setting and then we show that for practical settings,
the overhead is not much more than that required by intra-
domain routing protocols such as OSPF. Without lack of
generality, we consider the simplest and the most inefficient
summary data structure ie. the direct bit map. This gives us
an idea of the worst case performance bounds.

Note that the DS feedback is generated by a router only
when one of its links is congested; that is, the link utilization
is above a certain congestion threshold. A simple way for a
router to detect if any of its links are congested could be to
look at the EWMA (exponentially weighted moving average)
of the queue length for the link. For example, if the link’s
EWMA queue length is greater than a certain threshold (say
70% of the total queue size) the link could be considered
congested for our purposes of sending feedback to the edge
routers. Additionally, to reduce the frequency of feedback sent

for a congested link when the number and constitution of flows
at that link are constantly changing, we propose to have a
dampening mechanism in place. A DS feedback will be sent
only when the current DS differs from the previously sent DS
by a non-trivial percentage.

In a typical scenario, we assume (for the purposes of cal-
culating an estimate of the feedback bandwidth requirements)
that once congestion has been detected for a link, and the
corresponding DS feedback has been generated for that link,
the constitution of flows at the link during the period of
that particular congestion event will not change significantly.
Hence there will be approximately one DS feedback generated
by the router per congestion event at a link. To the best of
our knowledge, there is no published study of the frequency
of congestion events. For the purposes of signalling overhead
comparison, we estimate the feedback bandwidth requirements
over a range of feedback frequency values varying from 30
seconds to 3 hours.

Consider a network G(V, E). Let n be the number of nodes
and m be the number of links. Let ρ be the fraction of the links
that are congested. Assume that the frequency of feedback
information sent per link is λ. Also suppose that there are N
flows and we desire an error in the summary data structures
that is no more than ε. Consider the worst case scenario of
all the congested routers sending feedback at the same time.
For a direct bitmap, the space requirement, and, hence, the
feedback payload is given in [34] by ζlwd = N

log Nε2 . Thus,
the total average overhead due to feedback on a single link ,η
is given by

ηlwd = λρn

(

N

log Nε2

)

(1)

To argue that the overheads due to LWD-fair are reasonable,
let us compare them with that of OSPF. OSPF is tuned,
engineered, and deployed such that its overheads are not
significant. Thus, it is reasonable to use OSPF as a point of
comparison.

For OSPF[35], the major overheads are due to HELLO
messages and LSA(Link State Advertisement)-updates. Hello
messages are typically exchanged over links, while LSA-
updates are typically flooded every 30mins. Using reasonable
values for OSPF parameters (HELLO messages of 50 bytes
every 10s and 200 bytes per router-LSA every 30 mins), we
can approximate the average OSPF overhead(due to router
LSAs and HELLO messages alone) on any link in a single
OSPF area of n routers, ηospf, which is given by

ηospf =
1

30minsn ∗ 200bytes +
50

10secbytes. (2)

Clearly, if we fix parameters such as ρ, λ, N and ε, asymptotic
overheads for both LWD-fair as well as OSPF are comparable.

Now consider practical values of each of the above parame-
ters. Consider an ISP of 100 nodes where each routers handles
approximately 100K flows and around 10% of all links in the
network are congested. First, we assume that feedback per
link needs to be generated every 30 mins. We will tolerate
a maximum error of 10% for our bitmap queries. Now, from



TABLE I
FEEDBACK OVERHEADS WITH 100000 FLOWS, FOR A RANGE OF

FEEDBACK FREQUENCIES.

Feedback Frequency Bandwidth Overhead
3 hrs 1.17B/s
1 hr 3.5B/s

30 mins 7B/s
3 mins 70B/s
1 min 210B/s
30 sec 420B/s
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Fig. 4. The multiple bottleneck simulation topology

Equation 1, ηlwd = 7 B/s and ηospf = 16 B/s. Even if we
assume that 50% links are congested, ηlwd = 35B/s which is
clearly not too far off. If we now assume that the feedback
frequency is around 3 minutes, ηlwd is still 70 B/s, (as shown
in the table) which is comparable to OSPF. Note that we have
used pessimistic estimates for calculating the overheads of
LWD-fair algorithm (direct bitmaps). The space requirements
are significantly better if we use multiresolution bitmaps, for
example. Thus, we believe that for most practical scenarios
our LWD-fair algorithm will not add significant additional
bandwidth overhead.

E. Results

In this section, we evaluate our framework in a step-by-step
fashion studying the trade offs and the relationship with the
performance. We study multiple bottleneck scenarios based on
two topologies, the dumbell and the parking lot. We use packet
level simulations for our study and we model misbehaving
flows as high-bandwidth CBR flows over UDP.

1) Experimental Setup: We conducted our simulations us-
ing the ns-2 [36] network simulator. We assumed simple direct
bitmaps for the summary data structures. The main objective
of the evaluation was to check the efficacy of the marking
based architecture. The architecture is meant to be independent
of both the feedback as well as the summary data structures
to be used. In this evaluation, we consider only multiple
bottlenecked scenarios and omit the results for the simpler
case with single bottlnecks.

2) Simple Multiple Bottlenecks: First we study a network
topology with multiple bottlenecks and two edges, as shown
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in Figure 4. Then we evaluate our architecture for a more
complex parking lot topology.

We first consider a simple example with four UDP flows,.
All the flows are 1Mbps UDP sources, and there are two
bottlenecks - a 1Mbps link and a 0.2Mbps link. We compare
the end to end throughput obtained by the UDP flows in our
framework, with that obtained by running Fair Queueing at
all nodes. We observe in Figure 5, that using our LWD-fair
marking algorithm, the bandwidth obtained by the flows actu-
ally comes very close to that theoretically predicted by global
max-min fairness constraints, while local fair-queueing will
not provide global fairness, and will actually provide lower
total throughput than our scheme. Thus we see that for non-
congestion reactive flows, fair-queuing does not provide high
network utilization, while LWD-fair marking does. A corollary
of this result is that since our scheme here approximates global
fairness, all misbehaving flows in the network are therefore
automatically curbed to their fair levels.

We now consider a more complex case in the same topology
as earlier, but using a mixture of TCP and UDP flows in the
network. We use a fixed set of 4 TCP aggregating at edge E1
and flowing out through node R3, while we vary the number
of 1Mbps UDP flows (from 2 to 10), which aggregate at
edge E2 and leave from R5. There are thus two bottlenecks,
the 1Mbps bottleneck for all flows, and the subsequent 0.2
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Fig. 7. The parking lot topology for studying multiple bottlenecks

Mbps bottleneck for the UDP flows later. As a measure of
network utilization and fairness in this scenario, we compare
the average TCP throughput obtained, in our scheme, Fair
Queueing (FQ), and theoretically predicted global fairness
estimates, or the global Fair Share (FS). The globally fair
values for the TCP flows should be (1 − 0.2)/4 = 0.2Mbps
since the UDP flows are bottlenecked later at a 0.2Mbps
link. The results obtained in our scheme are very similar
to the theoretical global max-min values. However with FQ,
we see that the TCP performance degrades progressively as
the number of UDP flows increase, due to FQ’s attempt to
provide local fairness in spite of the fact that the UDP flows
will not be able to use their allocated fair-share further ahead.
We therefore illustrate that in the absence of global fairness,
locally fair router schemes may not provide high network
utilization if some flows are non congestion-reactive. The
graphs in Figure 6 plots the average goodput of the TCP flows
as the number of UDP flows increases. Ideally, the total UDP
goodput should not exceed 0.2Mbps due to the bottleneck at
the link R2 − R4. This implies that the TCP goodput should
not vary as the number of UDP flows are increased. However,
Fair Queueing at R1 is unaware of the bottleneck at the link
R2 − R4 for the UDP flows. Hence it decreases the goodput
of the TCP flows as the number of UDP flows increases. This
graph indicates that our LWD-fair scheme along with CAM
markers does not face this problem.

3) Parking lot topology: Now let us consider the parking
lot toplogy as shown in Fig. 7. The nodes Si are the sources
while the destinations are Di. There are three groups of flows,
namely (S1, D1), (S2, D2) and (S3, D3) with N , M and P
flows respectively. Apart from the bandwidths shown, all the
other links have 10Mb/s or more.

In our experiment we keep M = P = 5. Thus we have 5
TCP flows from S2 to D2 and 5 UDP flows from S1 to D1.
We vary N , the number of UDP flows from S1 to D1. We
compare the average throughput of the TCP flows with the
goodput obtained if FQ was used. The results are depicted in
Fig. 8, where we plot the average bandwidth of the TCP flows
from S2, D2. Note that for all the M flows, the bottleneck is
link (r2, r3). Now, the ideal centralised fair share algorithm
would give each of these N , P flows 1

N+P Mbps. Thus the N
TCP flows would each get

BW FS
TCP =

3 − N
N+P

M
Mbps (3)

On the other hand, if we use FQ at all routers, we will
not achieve the globally fair share (FS) rates because at
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Fig. 8. Performance of TCP flows with LWD-fair marking is very close to
idea fair share

router r1, FQ would give each flow equal share and every
flow would get 3

M+N . Hence there would be a drop in the
network utilization. Clearly, our LWD-fair does not face this
problem as it is has the feedback information of the flows
from the bottlenecks. When the packets to D1 appear at
S1, it is marked with the target rate of the most congested
link it encounters, which in this case is r3r4. The M TCP
flows get marked with the target rate of the router at r1

which is approximately equal to Equation 3. This rate is
due to our LWD-fair algorithm and the error in this rate
calculation depends on the summary data structure used. Thus
the IN token allocation is approximately max-min fair. On
congestion, RIO drops all the OUT packets and this leads to
an approximate globally max-min fair bandwidth allocation.

Finally, we study the effects of the errors in the summary
structures on the performance of our LWD-fair algorithm. The
sources of error in this architecture primarily stems from the
errors in summary data structures used. Now, this error is dif-
ficult to characterize theoretically. Low state summaries might
cause a reduction in accuracy of the fair rate calculations. In
our evaluation, we consider accurate bitmaps and only two
congested routers. In order to determine the robustness of our
LWD-fair algorithm, we artificially induce error in the fair
rates calculated for each router by the markers. This gives us
a metric to study how robust our algorithm is to errors.

We fix the parameters M , N , P in the above experiment
to be 5 each. Then we introduce errors in the approximate
summary DSs sent by the congested nodes. This is modelled as
an error in the number of flows bottlenecked at that router. We
vary the error from 0.02 to 0.5 and plot the average bandwidth
in Fig. 9. We find that the error introduced in the end-to-
end goodput of the TCP flows is only 12% (compared to
LWD-performance without error) as we increased the error
in the summaries to 50%. Thus, for the practical scenarios we
consider, it seems that our algorithm might be robust to errors
introduced by summary DSs.

Thus we have shown that for representative scenarios
considered in this paper, our LWD-fair markers along with
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feedback and RIO dropping are effective in dampening of mis-
behaving flows and enforcing a network-wide approximately
max-min fair bandwidth allocation.

4) Discussions: In this section, we introduced a lightweight
architecture that can impose an approximate globally max-min
fair bandwidth allocation and provide efficient network-wide
bandwidth utilization. Our framework consists of marking
packets at edges using a LWD-fair marking algorithm that uses
low-state feedback from core router and AQM-based marking
to allocate bandwidth to flows in an approximately globally
or network wide max-min fair manner. Using detailed packet
level simulation, we observe that in representative topolo-
gies with multiple bottlenecks and non-responsive traffic, our
architecture can improve TCP performance in the presence
of misbehaving flows, by an order of magnitude. We also
show that our scheme outperforms FQ in terms of network
utilization and global fairness, and approaches the theoretical
global max-min fairness levels.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the space and communication
complexity of the well known problem of providing fairness
(both local and global) among different flows within a net-
work, and a practical scheme to implement global fairness for
certain scenarios. We motivated the global fairness problem
by observing that even if we deploy fair queueing at each
router, we may not be able to provide fairness and maintain
high utilization simultaneously.

The main contribution of this paper is a lower bound for the
amount of space required by a router to provide approximate
max-min fairness with bounded errors. We are unaware of
any other work that has explored the space complexity of
fairness algorithms. We show that in order to enforce max-
min fairness with bounded errors, a router must maintain per-
flow state. This result translates to lower bounds for global
max-min fairness as well. We also conjecture that each router
must communicate per-flow state for enforcing global fairness
with bounded errors. Then, we present an edge-marking based

architecture to demonstrate the practical enforcement of ap-
proximate global max-min fairness for representative scenarios
with multiple bottlenecks and non-responsive traffic.

One potential direction for future work is to characterize
scenarios for which the space complexity to impose fairness
may be o(n), where n is the number of flows. Such a charac-
terization will be of great help to network designers. Another
interesting theoretical direction is to prove our conjecture for
the communication complexity of the global fairness problem.

We are encouraged by the initial results of the LWD-
fair architecture, and we plan to determine the space versus
accuracy trade-offs when different summary data structures
are used. We know that though we cannot improve on the
Ω(n) bound for the space complexity in the general case, we
hope to obtain better bounds for specific scenarios with skewed
distributions of flow rates, and use this to design better AQM
mechanisms.
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