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ABSTRACT

Although the Internet is widely used today, we have little
information about the edge of the network. Decentralized
management, firewalls, and sensitivity to probing prevent
easy answers and make measurement difficult. Building on
frequent ICMP probing of 1% of the Internet address space,
we develop clustering and analysis methods to estimate how
Internet addresses are used. We show that adjacent ad-
dresses often have similar characteristics and are used for
similar purposes (61% of addresses we probe are consistent
blocks of 64 neighbors or more). We then apply this block-
level clustering to provide data to explore several open ques-
tions in how networks are managed. First, we provide infor-
mation about how effectively network address blocks appear
to be used, finding that a significant number of blocks are
only lightly used (most addresses in about one-fifth of /24
blocks are in use less than 10% of the time), an important
issue as the IPv4 address space nears full allocation. Second,
we provide new measurements about dynamically managed
address space, showing nearly 40% of /24 blocks appear to
be dynamically allocated, and dynamic addressing is most
widely used in countries more recent to the Internet (more
than 80% in China, while less than 30% in the U.S.). Third,
we distinguish blocks with low-bitrate last-hops and show
that such blocks are often underutilized.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology ; C.2.3 [Computer-
Communication Networks]: Network Operations—Net-
work management

General Terms: Measurement

Keywords: Internet address usage, survey, pattern analy-
sis, clustering, classification, availability, volatility, median-
up, low-bitrate, RTT

1. INTRODUCTION
Previous Internet topology studies focused on AS- and

router-level topologies [5,7,9,12,23,27,28]. While this work
explored the core of the network, it provides little insight
into the edge of the Internet and the use of the IPv4 address
space. The transition to classless routing (CIDR, [11]) in the
mid-1990s has made the edge opaque. Only recently have
researchers begun to study edge-host behavior using server
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logs [31], web search engines on textual addresses [29], and
ICMP probing [13].

Yet the network edge has seen great change and deserves
study. How is CIDR applied? How is dynamic addressing
used? How widespread are low-bitrate edge links? In this
paper we use active probing to study these properties of the
edge of the Internet.

Assumptions: In this paper we begin to explore the po-
tential of clustering of active probes to infer network address
usage. Our work makes three assumptions:

1. Many active addresses will respond to probes,

2. Contiguous addresses are often used similarly, and

3. Patterns of probe responses and response delay suggest
address usage.

While there are cases where these assumptions do not
hold, we believe the assumptions apply to a large fraction of
the Internet and so active probing can provide insight into
address usage.

We examined the first assumption and previously showed
that active probes detect the majority of addresses in use, as
verified with tests against a university and a random sample
of the general Internet [13].

While this prior work established the collection methodol-
ogy and error bounds; this paper provides the first evidence
for the next two assumptions and their application to under-
stand network usage. The second assumption is contiguous
use, which follows from the traditional administrative prac-
tice of assigning blocks of consecutive addresses to minimize
routing table sizes. While there is no requirement that ad-
jacent addresses be used for the same purpose, we will show
that they are often used similarly (§[4.1]).

Finally, we assume that repeated active probing with ICMP
provides information about how addresses are used. We take
advantage of both the pattern of positive, negative, or miss-
ing response, and the round-trip time (RTT) of the response.
While a single ICMP response provides only limited informa-
tion (consent of the address to reply), repeated probing can
tell much more. For example, we use response patterns to
distinguish intermittent from continuously used addresses,
and we show that RTT can identify low-bitrate edge links.

Figure 1 shows an example of what can be learned from
probing one block of 256 addresses with prefix1 p. In this
figure, the 256 addresses in prefix p are mapped into two
dimensions following a Hilbert curve (each quadrant of the
square shows one-quarter of addresses, recursively). Dif-
ferent shades indicate different ping response patterns from

1
Recall that IPv4 addresses are 32-bit numbers, usually written in

the form a.b.c.d, where each component is an 8-bit portion of the
whole address. Addresses are organized in blocks (sometimes called
subnetworks) that are sized to powers of two. Blocks have a common
prefix, the leading p bits of the address, written a.b.c.d/p. For ex-
ample, 128.125.7.0/24 indicates a /24 block with 256 addresses in it
of the form 128.125.7.x. We sometimes talk about blocks as p.0/24,
where p represents the anonymized prefix.
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Figure 1: Top: a /24 block (prefix is anonymized to
p) with 4 plausible regions of different use. Bottom:
our BlockSizeId algorithm (ǫ = 2.0) identifies these
regions (§[3.3]), with best-fit variance in (parenthe-
ses).

each address (white is non-responsive; green, availability;
red, volatility; metrics we define later in §[3.2]). Two green
areas are blocks of addresses that are almost always up:
the single address p.65/32 at the top center, and the 32-
addresses block p.128/27. The two dark areas (the lower
left quarter, p.192/26, and bottom right eight, p.160/27) are
used only infrequently, with low availability and volatility.
We can often confirm these probe-based observations against
other sources (§[5] discusses hostnames and operator-provided
ground truth). The bottom of the figure shows how we au-
tomatically identify these regions (§[3.3]).

Approach and Validation: From these assumptions we
develop new algorithms to identify blocks of addresses with
consistent usage (§[3]). We start with Internet survey data,
where each address in around 24,000 /24 address blocks is
pinged every 11 minutes for around one week [13]. From this
dataset we derive several metrics about address usage. We
then use these statistics to automatically identify blocks of
consistent responsiveness.

Before applying these algorithms, we evaluate how often
our assumptions hold. Our first question is therefore are ad-
jacent addresses used consistently and can we discover them
reasonably accurately? Before classless IP addressing [11]
allocation strategies were aligned with externally visible ad-
dress allocation, but since then there has been no way to
easily evaluate how addresses are used. We explore these
basic questions in §[ and §4.1][5.1.1].

Applications: A first application of this approach is
to understand how addresses are managed, beginning with
what block sizes are typical (§[4.1]). We find that 2,529,216
addresses, or 61% of the probed address space, show con-
sistent responses in blocks of 64 to 256 adjacent addresses
(/26 to /24 blocks). Also, we observe that most addresses
(around 55%) are in /24 or bigger blocks.

Another application is understanding how effectively ad-
dresses are used (§[4.2]). We find that many blocks are only
lightly used (about one-fifth of /24s show less than 10% uti-
lization). Improving utilization is increasingly important as
the IPv4 address space nears full allocation; improving IPv4
efficiency is a cost to compare compared to IPv6 transition.

Third, we detect and quantify the use of dynamic address
assignment (§[4.3]). Dynamic addresses are used in some
spam detection algorithms [31], and identifying dynamic ad-
dresses is important to estimate the number of computers
that connect to the Internet [13]. We observe that nearly
40% of /24 blocks appear to be dynamically allocated, and
dynamic addressing is much higher in countries most recent
to the Internet (more than 80% in China, while less then
30% in the U.S.).

Finally, we distinguish blocks connected mainly by low-
bitrate edge links from those with broadband connections,
identifying blocks used by dial-up and older mobile phones
(§[4.4]). Study of edge bitrate can help understand trends
in technology deployment, and automatic identification of
users of low-bitrate networks may allow websites to auto-
matically match content and layout. Edge links and policies
also interact with address utilization (§[4.4]); we show low-
bitrates links are correlated with short connect-times and
sparse usage.

The contribution of this paper is therefore to develop new
approaches to classify Internet address usage and to apply
those approaches to answer important questions in network
management. As with other studies of the live Internet, our
approach must employ incomplete information: our surveys
cover randomly selected /24 blocks (not larger) and do not
inform us about addresses that refuse to respond. How-
ever, we suggest that the approach is promising and our
preliminary results provide new techniques, adding to what
is currently known.

2. RELATEDWORK
Much prior work has explored the Internet topology [5,7,

9,12,23,27,28]. Recent work has begun exploring edge host
behavior [13, 29, 31]. Our work builds upon this prior work
and the specific work listed below.

Are contiguous addresses consistent and what are the typ-
ical block sizes? Although addresses are usually assigned as
blocks and represented in prefixes by classful [24] and class-
less addressing [11], there is no guarantee that contiguous
addresses in the same block will be used in the same way.
Huston’s report has analyzed the common prefix lengths in
BGP routing table [14]. But it cannot look at usage at gran-
ularities smaller than BGP prefixes. Our approach is able
to look at these smaller block sizes through active probing.

Are allocated addresses efficiently utilized? Several re-
searchers have studied rates of IPv4 address consumption,
predicting IANA will exhaust its allocation pool in 2011 [14].
However, full allocation does not necessarily imply full use.
Prior researchers inferred address utilization by detecting
allocated but not advertised prefixes in BGP routing ta-



ble [22]. But what is routed may differ from what is actively
used. Our work tries to track active use; and our study of in-
dividual addresses can reveal changes that happen to blocks
inside an organization (smaller than are typically routed).

How many addresses are dynamically assigned? Xie et al.
have begun to explore this question with a goal of identifying
dynamic blocks to assist spam prevention [31]. Their work is
based on passive collection of Hotmail web server logs, while
our method uses a completely different approach by active
probing and so can extend and corroborate their findings. In
our prior work, we provide another perspective based on ac-
tive probing with ICMP [13]. While this prior work focused
on censuses (occasional but complete probing) and establish-
ing the methodology, here we study survey data (frequent
probing of a sample of the Internet) and add significant new
analysis to identify block sizes and low-rate edges.

CAIDA has long studied Internet topology with active
probing [18]. They traceroute to one address for each routed
/24 address block. Our datasets differ by probing only a
fraction of /24s (but all addresses in them, and much more
frequently). Probing /24s allows us to take the advantage
of locality to study address usage. Because contiguous ad-
dresses are usually administrated together and used in the
same way, analyzing the whole block instead of sampling one
address from each block can provide information not previ-
ously available. In addition, our frequent sampling shows
temporal changes useful for identifying dynamic address al-
location.

Regional Internet Registries (RIR) have another potential
source of data, as they require organizations to state the
usage of current addresses and the planned usage of new
addresses [2, 3]. Such data is not generally available, but it
is another possible means of future validation.

Identifying edge-link bitrates? A great deal of work has
explored identification of edge-link bitrates (or link capacity)
and available bandwidth. While we cannot review it all here,
key results include packet pair [19] and pathchar [16]. We
explore the use of variance as a new approach to estimate
edge-link bitrates (§[3.5]).

3. METHODOLOGY
This section introduces our methodology: collecting raw

data through an Internet survey, transforming that data
into relevant observations, identifying blocks of consistent
use, classifying blocks into ping-observable categories, dis-
tinguishing between low-bitrate and broadband blocks.

3.1 Data Collection: Surveying the Internet
We would like as much data about Internet addresses or

hosts as possible, but we must balance that desire against
today’s security-conscious Internet culture. Our data collec-
tion builds on prior Internet ICMP surveys that ping each
address of about 1% of the allocated Internet address space
approximately every 11 minutes for one week or longer [13].

We use a previous selection methodology [13], selecting
around 24,000 /24 blocks from those that were responsive in
a prior census of all allocated addresses. We select blocks of
addresses rather than individual addresses so we can study
how addresses are allocated and used. Our choice of /24
blocks limits our ability to observe very large allocations, but
allows the identification of blocks smaller than 256 addresses
(§[4.1]). As with prior work, half of the selected blocks are
kept consistent across multiple surveys and half are chosen
randomly, enabling longitudinal studies while providing a

subset that is selected with very little potential bias. We
compare two surveys in §[5.3], showing that our study of 1%
of the address space represents a large enough fraction of
the space to be representative.

Approximately every 11 minutes, each address is probed.
Probes are dispersed over this period and sent in pseudo-
random order to avoid correlations due to outages. Probes
taken every 11 minutes limit our ability to detect very rapid
churn of dynamic addresses, however prior studies of dy-
namic addresses placed typical use durations at 75 or 81
minutes [13, 20], suggesting we have reasonable precision.
Responses can be classified into three broad categories: pos-
itive (echo reply), negative (for example, destination un-
reachable), and non-response. In this paper we ignore all
non-positive responses. Packet loss can cause measurement
inaccuracy, so we use 1-loss repair to cope with singleton
packet losses [13] (1-repair assumes an absent response be-
tween two consistent responses is loss and interpolates ac-
cordingly). Network outages can also distort our survey. We
manually examine our survey and select a period that has
no local network outages.

All surveys but IT16ws [30] cover more than one week,
allowing us to detect diurnal and weekly cycles.

Of course, using ICMP for probing has significant limita-
tions. The most serious is that large parts of the Internet are
firewalled and choose not to respond to our probes. Some
form of this bias is inherent in any study using active prob-
ing. Prior studies of a large university and a random sam-
ple of Internet addresses suggest ICMP probing undercounts
hosts by a factor of 30–50%, and that ICMP is superior to
TCP-based probing [13]. We recognize this limitation as
fundamental to our methodology, but we know of no evi-
dence or inference to suggest that the firewalled portions
of the Internet use significantly different allocation strate-
gies than the more open parts of the Internet. In addition,
we confirm the accuracy of our results at USC (§[5.1]), and
we show similar accuracy for manual inspections of blocks
drawn at random from the Internet in §[5.2]. However, we
are exploring additional ways to verify this assumption, and
investigation of the firewalled Internet is future work.

Table 1 shows the datasets we use in our paper. We use
two ICMP surveys taken by USC [13]: IT17ws2 and IT16ws;
IT17ws is the main dataset used in this paper, while we use
IT16ws, IT30ws, IT31ws for validation in §[5.3]. Not all
/24 blocks we picked respond to our pings, however, most
of them did respond at least once by one IP address. We
collected LTUSCs to compare our inferences with network
operators as discussed in §[5.1]. Finally, we use a domain
name survey from ISC [15] to validate our conclusions (§[5]).

3.2 Representation: Observations of Interest
Since one survey provides more than 5 billion observa-

tions, it is essential to map that raw data into more mean-
ingful metrics. We call this step data representation. We
define three metrics to characterize address usage: availabil-
ity, the fraction of time an address is responsive; volatility, a
normalized representation of how many consecutive periods
the address is responsive; and median-up, the median dura-
tion of all up periods. And we characterize edge bitrate with

2
The name IT17ws indicates: Internet Topology, the 17th full col-

lection, “w” collected at ISI-west in Marina del Rey, and “s” indicates
a survey rather than a full census.



Start Date /24 Blocks
Name (# days) probed respond. Use
IT17ws [30] 2007-06-01 (10) 22,367 20,849 all

IT17wvs 2007-06-01 (10) 100 100 §5.2
IT17wbs 2007-06-01 (10) 200 200 §5.2

IT16ws [30] 2007-02-16 (6) 22,365 20,900 §5.3
IT30ws [30] 2009-12-23 (14) 22,381 20,227 §5.3
IT31ws [30] 2010-02-08 (14) 22,376 19,909 §5.3
LTUSCs [30] 2007-08-13 (9) 768 299 §5.1
ISC-DS [15] 2007-01 hostnames §5
RIR [25] 2007-06-13 block allocation §4

Table 1: Datasets used in this paper.

two metrics: median-RTT and stddev-RTT, the median and
standard deviation of RTT values of all positive responses.

3.2.1 Metrics characterizing addresses usage
To define availability, volatility and median-up, let r∗i (a)

be the positive (1) or non-positive (0) measurements for ad-
dress a (for all i ∈ [1 . . Np], where Np is the number of
probes). We analyze these values after 1-loss repair [13]:

ri(a) =



1, r∗i (a) = 1 ∨ (r∗i−1(a) = 1 ∧ r∗i+1(a) = 1)
0, otherwise

If each probe is made at time ti, we can define the series of
up durations of an address in a survey as

uj(a) = tej − tbj , ∀j ∈ [1 . . Nu] where

ri = 1, ∀i ∈ [bj . . ej ]and r(bj)−1 = 0, r(ej)+1 = 0

(each up duration is a consecutive run of positive probes
from bj to ej , inclusive). There are Nu up durations in
total, where Nu < Np. We can now clarify that availability,
volatility, and median-up are given as:

A(a) =
1

Np

Np
X

1

ri

V (a) = Nu/⌈Np/2⌉

U∗(a) = median(uj , ∀j ∈ [1 . . Nu])

Availability is normalized, the fraction of times a host is
reachable. Volatility is normalized by ⌈Np/2⌉, the maxi-
mum number of states (alternating value each time). (We
also sometimes use un-normalized volatility, V ∗(a) = Nu,
simply the count of up periods.) We considered normalizing
median-up to measurement duration, but chose not to be-
cause such normalization distorts observations about hosts
that are not nearly always present.

While these metrics are not orthogonal, each has a pur-
pose. Availability shows how effectively addresses are used.
High volatility indicates addresses that are intermittently
used and often dynamically allocated. Median uptime sug-
gests how long an address is used.

These estimates assume the ri observations are correct
and represent a single host. Because we know our data
collection omits firewalled hosts (§[3.1]), we generally ig-
nore addresses that never respond. More troubling are ad-
dresses used by multiple computers at different times—such
addresses actually represent multiple hosts. The purpose
of dynamically allocated addresses is exactly to share one
address with multiple computers, and we know dynamic as-
signment is common (see §[4]). If those hosts are used for
different purposes (servers sometimes, and clients others),
usage inference will be difficult and unreliable. However, we
believe that it is relatively uncommon for a dynamic address
to transition between client and server use, since servers usu-

ally require stable addresses. (There is some use of dynamic
DNS to place services on changing addresses. We believe
such use is rare for most of the world but plan to explore
this issue in future work.)

3.2.2 Metrics characterizing edge bitrate
While address usage considers all ICMP responses (posi-

tive and negative), round-trip time estimates are only present
in positive responses. To estimate bitrate, we therefore de-
fine R∗(a) be the set of RTT values extracted from positive
responses for address a, that is, the set of all R∗

i (a) where
r∗i (a) = 1, ∀i ∈ [1 . . Np]. (So |R∗(a)| ≤ |r∗(a)|.) From this
set we compute standard deviation of R∗(a): R∗

µ
1/2

(a), when

we have sufficient samples (|R∗(a)| ≥ 10).
We use these metrics to identify low-bitrate edge links.

Median-RTT tracks typical response bitrate, while stddev-
RTT estimates variance. In §[3.5] these metrics can identify
low-bitrate blocks.

3.3 Block Identification
We next use our observations about addresses to evaluate

block size using a clustering algorithm that considers the
address hierarchy.

We assume blocks are allocated in sizes that are powers of
two, so block identification is the process of finding a prefix
where addresses in the block are used consistently. We find
that some blocks are not used consistently, and different ad-
dresses show very different stability. In our analysis we will
keep dividing these mixed-use blocks until they are consis-
tent, if necessary devolving to a single address per block.
Another challenge is that many blocks have gaps where a
few addresses are used differently, or are not responsive,
perhaps because they are unused or firewalled. Our algo-
rithm weighs choice of larger blocks with some inconsisten-
cies against smaller but more homogeneous blocks.

We only consider /24 blocks and smaller because current
data collection method gathers samples of that size. Explo-
ration of larger blocks is an area of potential future work.

We use partitional clustering [17] to determine blocks that
appear to be used consistently based on their responsive-
ness. A pattern matrix defines the features of patterns (i.e.,
addresses) being clustered: (A(a), V (a), U∗(a)) across the
space of disjoint /24 blocks. (We also use (R∗

µ
1/2

(a), R∗

σ(a))

later in §[3.5] to identify block connection types.) Each /24
block has a 256× 3 pattern matrix x∗

ij , where j enumerates
the three features, and i enumerates each address in a /24
block. From our 24,000 /24 blocks we get 24,000 pattern
matrices in total. To give each features equal weight, we
employ feature normalization. And we define the normal-
ized pattern matrix as xij = (x∗

ij − µj)/σj , where µj and
σj are the feature’s mean and standard deviation. We then
use Euclidean distance to measure dissimilarity between two
patterns. Because Internet addresses impose a unique re-
striction that addresses are only grouped into blocks that
are contiguous, sizes of powers of two, and aligned at multi-
ples of the size, we cannot directly use traditional algorithms
such as K-means. We therefore employ an elbow criterion, a
common rule of thumb to determine the number of clusters.
We split each cluster into two whenever splitting adds sig-
nificant information, and we stop when we pass the “elbow”
of the curve and more clusters add little benefit.

3.3.1 Our algorithm to identify block sizes
Our algorithm follows the basic structure from above: we

define a pattern matrix of addresses by features, normalize



the features, then recursively search for clusters until reach-
ing the elbow. We fill in the details next.

The algorithm is a recursive function, BlockSizeId, taking
an address-feature matrix 256 × (A(a), V (a), U∗(a)) and a
given prefix length P . Since the blocks in our survey are dis-
joint, we iterate over each /24 block in our survey separately,
beginning with P = 24.

BlockSizeId then computes the intra-block unnormalized
variance, vsump, for all possible prefix lengths p (P ≤ p ≤
32). It then selects the smallest prefix length pelbow where
longer prefixes show minimal change.

np = 2p−P , sp = 232−p, µbj =

Pbsp

i=(b−1)sp+1 xij

sp

vb =

3
X

j=1

bsp
X

i=(b−1)sp+1

(xij − µbj)
2, 1 ≤ b ≤ np

vsump =

np
X

b=1

vb, P ≤ p ≤ 32

Here np is the number of sub-blocks with prefix length p, sp

is the size of sub-blocks (number of addresses) with prefix
length p. For example, if P = 24 and p = 27, then np = 8

and sp = 32. mbj is the mean value of the jth feature of

addresses in the bth sub-block. vb is the intra-block unnor-
malized variance of the bth sub-block. In this example, it

would be the intra-block unnormalized variance of the bth

/27 sub-block.
We define minimal change in the elbow algorithm with

an empirically selected constant threshold, ǫ = 2.0. We
select pelbow as the smallest p such that vsumi+1−vsumi <
ǫ, p ≤ i ≤ 31. If pelbow = P , then no division of this block
reduces variance significantly and we terminate our recursive
algorithm, declaring P the consistent block size. If this case
does not hold, we have determined there are splits of the
block that appear to be more consistent. We then split the
block in half and recurse, calling BlockSizeId with the next
longer prefix P = p+1 on each half of the data. In principle,
a block could be split repeatedly until it is composed on a
single address (since singletons will drive variance to zero).
In §[4.1] we show that, in practice, our threshold causes the
majority of the Internet addresses fall into larger blocks of
consistent use.

3.3.2 A block identification example
To illustrate BlockSizeId we next show analysis of an ex-

ample /24 block taken from the Internet. The top of Figure 1
shows the whole block, while the bottom graphs show how
the algorithm identifies four sub-blocks. As described earlier
(§[1]), a human identifies two bright green areas (or light
grey) indicating high availability: p.65/32 and p.128/27,
and two dark areas showing low availability and volatility,
p.160/27 and p.192/26. Hostnames for this block show it is
used for wireless access, and the green areas are servers and
routers, while the dark areas are dynamically assigned by
DHCP.

The first graph in the middle of the figure shows the first
pass of BlockSizeId, with P = 24 covering all of block p.0/24.
In the graph, the y-axis shows variance for division of the
block into each possible power-of-two smaller size. Here
pelbow = 25 and pelbow > P , so we recurse to P = 25.

The second row of two graphs shows these recursive in-
vocations, p.0/25 on the left and p.128/25 on the right.
For p.0/25 with only one responsive address, the left graph

shows a consistent variance regardless of subdivision, and
pelbow = P = 25, so this prefix is consistent and this recur-
sion terminates. For p.128/25 on the right, a subdivision
reduces variance and so we recurse again to P = 26.

The algorithm continues until either pelbow = P or P =
32. In this example, the initial /24 block is divided into
p.65/32, p.128/27, p.160/27, and p.192/26.

3.4 Ping-Observable Block Classification
We can now take remote measurements, convert them into

observations, and use them to identify blocks of consistent
neighboring addresses. We generalize our observations on
addresses into observations about a block b by taking the
median value of each observation:

(A(b), V (b), U∗(b)) = median(A(a), v(a), U∗(a)) ∀a ∈ b

We then classify these blocks into five ping-observable cat-
egories, using (A(b), V (b), U∗(b)). We use four thresholds,
αH = 0.95, indicating high availability, αL = 0.10, indicat-
ing low availability, β = 0.0016, for low volatility (V (b) = β
is equal to V ∗(b) = 1, i.e., only up for once), and γ = 6
hours, corresponding to a relatively long uptime.

Always-stable: highly available and stable.

(A(b) ≥ αH) ∧ (V (b) ≤ β)

Sometimes-stable: changing more often than always-
stable, but frequently up continuously for long periods (high
U∗(b)).

(U∗(b) ≥ γ) ∧ (A(b) ≥ αL) ∧ (A(b) < αH ∨ V (b) > β)

Intermittent: individual addresses are up for short pe-
riods (low U∗(b)):

(U∗(b) < γ) ∧ (A(b) ≥ αL) ∧ (A(b) < αH ∨ V (b) > β)

Underutilized: although addresses are occasionally used,
they show low A(b) values.

A(b) < αL

Unclassifiable: we decline to classify blocks with few
active responders, currently defined as any block where fewer
than 20% of addresses respond.

We selected these categories to split the majority of the
(A(b), V (b), U∗(b)) space, informed by evaluations of dozens
of blocks (573K addresses in total) backed by manual prob-
ing of hosts and hostnames (details, see [4]).

While we have defined these categories based on what we
can observe, the categories are correlated to real-world ad-
dress usage. Always-stable is typical of servers, routers and
always-up end hosts. Manual inspection of randomly cho-
sen reverse hostnames indicates that more than 80% servers
and routers have always-stable addresses. Sometimes-stable
correlates addresses with hostnames that indicate statically-
assigned user computers, businesses (names containing “biz”
or “business”), some dynamically assigned but always-on
connections (cable modems or DSL connections). Intermit-
tent characterizes the majority of cable and DSL hosts and
some active dial-up hosts. We find many address blocks,
often identified as dial-up by hostname, are categorized as
underutilized. (More than 50% of hostnames that indicate
dial-up have A(b) < αL.)

We examine sensitivity to our choices in §[5.3].

3.5 Identifying Low-bitrate Blocks
Block categories correlate with edge link technologies, but

they are not one-to-one—we find that dial-up and DSL ap-
pear as both intermittent and underutilized. To better un-
derstand technology trends, we next show that variance across



repeated RTT measurements can identify blocks with low-
bitrate edge links. We define low-bitrate as less than 100Kb/s,
such as dial-up (56Kb/s) and GPRS (57.6 Kb/s). We first
present a RTT model, and then apply it.

3.5.1 Background: components of RTT
Round-trip time has several components:

RTT = 2(Dcpu + Dprop + Dt + Dq)

where Dt = S/B and Dq = nDt

The first two components, per-hop processing delay in the
routers (Dcpu ), and distance-based propagation delay (Dprop)
are largely independent of the edge link. Transmission de-
lay (Dt), however, is based on packet size (S, approximated
as constant for this simple model) and the bottleneck link’s
bitrate, B. Queuing delay (Dq) is a multiple of Dt based
on queue length. (All terms are for the full round-trip and
do not require path symmetry; we assume the prober is well
connected.)

Our goal is to distinguish addresses with low-bitrate edge
links from broadband links. In the simplest possible case,
we first assume the targets are one-hop from our prober and
there is no congestion, so Dcpu and Dprop are negligible and
Dq = 0. Here the only difference is transmission delay, and
we can easily distinguish common edge technologies since
Dt dominates RTT. Here even a simple threshold of R∗(a)
would distinguish slow edge links, since our 64B probe takes
9ms over a 56kb/s dial-up link but much less than 1ms at
broadband (1Mb/s or faster).

In practice, our prober is distant from most of the Internet
and we encounter interfering traffic. At long distances, Dcpu
and Dprop can dominate RTT, often approaching 200ms for
communications between continents, completely obscuring
the effects of the edge we wish to observe via Dt.

Queuing delay is another source of noise, but it also pro-
vides the means to see through distance. With queuing de-
lay, Dq = nDt = n(S/B), where B is the bitrate on the
backlogged link. Queuing delay can happen at any loca-
tion along the path, either in the backbone or the edge link.
We assume that most queuing occurs at the edge link, since
although backbones are highly multiplexed, they consist of
high-bitrate, carefully managed links, and we expect queues
to be short (n is low) and to clear quickly (since Dt < 1µs at
1Gb/s, even for a 1500B interfering packet). For slow edges,
each packet in the queue ahead of a probe adds tens or hun-
dreds of milliseconds, since (Dt is 1ms for 1Mb/s ADSL, and
almost 10ms for dial-up, and Dq = nDt. If we assume slow
links are likely at the edges, then queuing (Dq) and RTT
are dominated by the effects of this edge link.

3.5.2 Identifying low-bitrate links from RTT
We next turn to identifying blocks with low-bitrate edge-

links with three steps: isolating the Dq component of RTT,
and generalizing results to blocks, and then classifying blocks
as low-bitrate.

Any given RTT observation is made up of the four compo-
nents identified previously. With one observation we cannot
separate those contributions. However, a week-long survey
provides hundreds of observations for most addresses. If
routing is generally stable, all components of RTT are con-
stant except for queuing delay, while Dq varies depending
on how backlogged the edge link each time it is probed. We
therefore look at variation in RTT to infer Dq, as measured
by R∗

σ(a) , the standard deviation of the RTT. Routing tech-
niques such as load balancing or wide geographic distribu-
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Figure 2: Number of addresses in each block size
and ping-observable categories in IT17ws.

tion of adjacent addresses [10] are sources of noise; we utilize
a fairly high threshold to mitigate their effects.

Standard deviation is well defined only with multiple mea-
surements and for positive probe responses; we ignore R∗

σ(a)
when |R∗(a)| < 10 as statistically invalid, and RTTs for neg-
ative responses since they may be generated by a router on
either side of the edge link. There are many addresses that
fail to reply positively to probes: in our survey, only about
41% of addresses from blocks that have any responses at
all respond, and about one-twentieth of these respond fewer
than 10 times. Our analysis of networks shows that most
are composed of large, homogeneous blocks (we show this
data in §[4.1]), so we extend our address-level observations
to blocks by defining a block-level estimate of RTT vari-
ance as the median of all address-level standard deviations:
R∗

µ
1/2

,σ(b) = median(R∗

σ(a)) ∀a ∈ b.

Low-bitrate block: We therefore identify low-bitrate
blocks from broadband by large variance:

R∗

µ
1/2

,σ(b) > δ

We select δ = 300ms, because it is roughly 1.5× the delay
of a full-size packet at dial-up speeds (1500B takes 212ms
at 56kb/s), and based on evaluation of dozens of low-bitrate
blocks. We examine the validity of this classification ap-
proach and the threshold in §[5].

4. APPLICATIONS
We next use the data to explore several questions in net-

work management: what are typical sizes of consistently
used Internet address blocks? How effectively are they be-
ing used? And how prominent is dynamic addressing?

To help answer these questions we compare our obser-
vations with the allocation data from the regional Internet
registries (RIRs) [1]. This RIR data includes the time and
country to which each address block is assigned. Although
not completely authoritative, this data is the best public
estimate for address delegation of which we are aware. We
collect data from each of the RIRs, selecting data dated June
13, 2007 to closely match our survey data.

4.1 Block Sizes
We begin by considering block sizes. Figure 2 and Table 2

show our analysis of IT17wvs.
This data shows that addresses in the Internet are most

commonly managed in blocks with /24 prefixes. In fact,
even though there are more opportunities for small blocks,
we find more /24 blocks than blocks of size /25 through
/29. Since our data collection only probes consecutive runs
of 256 addresses, this prevalence suggests we may need to



size sometimes- classifiable unclassifiable blocks addresses
pfx addrs always-stable stable intermittent underutilized (100%) [100%]
/24 256 1,603(18%) 2,517(29%) 2,673(30%) 1,994(23%) 8,787* 3,411 [27%] 12,198 3,122,688
/25 128 323(23%) 523(38%) 295(21%) 237(17%) 1,378* 920 [40%] 2,298 294,144
/26 64 346(21%) 617(38%) 378(23%) 274(17%) 1,615* 787 [33%] 2,402 153,728
/27 32 432(20%) 855(40%) 506(23%) 361(16%) 2,154† 872 [29%] 3,026 96,832
/28 16 759(20%) 1,301(34%) 993(46%) 734(19%) 3,787† 1,139 [23%] 4,926 78,816
/29 8 2,077(21%) 3,190(32%) 2,355(24%) 2,227(23%) 9,849† 0 9,849 78,792
/30 4 3,312(19%) 5,656(33%) 4,679(27%) 3,707(21%) 17,354† 0 17,354 69,416
/31 2 4,195(16%) 9,867(37%) 7,864(30%) 4,566(17%) 26,492† 0 26,492 52,984
/32 1 52,646(30%) 42,847(24%) 43,266(25%) 36,707(21%) 175,466† 0 175,466
entire IT17ws dataset: (1,603,086 addrs. in non-responsive blocks) + (4,122,866 in responsive blocks) 22,367 5,725,952

Table 2: Number of blocks of each size in IT17ws (10 days). Unclassifiable percentages relative to all blocks;
other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers: non-consistent.

probe larger consecutive areas to understand if even larger
blocks are common but not seen in our survey.

There are a very large number of the smallest blocks, with
about as many /29s as /24s, and roughly twice as many /30s
as /29s, and /31s as /30s. These results may be artifacts of
our block discovery algorithm: it is statistically easier for
an address to be consistent with a few neighbors in a small
block than with 128 neighbors in a /25. We next re-examine
the second assumption underlying our work: are contiguous
addresses often used similarly? If we define consistent usage
as just the largest three block sizes (/24 through /26) that
we successfully identify, we find 2,529,216 addresses are used
consistently, or 44% of the probed address space.

While clearly defined, this percentage does not accurately
present how much of the Internet is consistently used. Some
of the probed address space is unclassifiable (with consis-
tent usage but fewer than 20% of addresses responding), or
completely non-responsive. We cannot say anything about
blocks that fail to respond at all. The status of unclassi-
fiable blocks is uncertain, but a conservative position is to
declare them inconsistent. A more representative evalua-
tion of the Internet is therefore to compare how much is
definitely used consistently (2.5M addresses in large blocks)
against that is effectively inconsistent (the 506,178 addresses
in small blocks) and the possibly inconsistent (the 1,087,472
addresses in unclassifiable blocks). This computation sug-
gests that a lower bound of 61% of the responsive Internet
is used consistently, We believe this supports our second as-
sumption: the majority of contiguous addresses are
used consistently.

4.2 Address Utilization
Given block sizes, we next evaluate how efficiently ad-

dresses are used in those blocks. Inefficient IPv4 usage repre-
sents an opportunity for improvement, but greater efficiency
comes with greater management cost. Management cost of
IPv4 should be weighed against simpler-to-manage IPv6.

4.2.1 Quantifying underutilization and possible causes
The underutilized ping-observable category is defined as a

sequence of addresses that are used less than 10% of the time
(§[3.4]). Large blocks of such infrequently used, public IP
addresses generally indicate inefficient address utilization.
(Such low utilization seems to make sense only in unusual
circumstances, such as a DTN satellite only infrequently in
view [8].)

The underutilized column of Table 2 shows that these
blocks are quite common, accounting for 17–23% of blocks of
each size, Although not shown in the table, the mean avail-
ability of addresses in /24 underutilized blocks is only 3.2%
of our 10-day observation (IT17ws). Manual examination of

addresses shows the mean number of up periods is less than
5 (V ∗(b) = 4.6), typically for around 1 hour (U∗(b)).

To understand causes of underutilized blocks we examine
the address hostnames of these /24 blocks. We find 63%
of addresses provide hostnames, and many of these host-
names (34%) include keywords that suggest how the ad-
dress is used. For example, dial and dsl suggest edge link
technologies, and dynamic or pool suggest dynamic address
assignment. (Full details [4] are omitted here due to space.)
Among the various usage suggested by hostnames, underuti-
lized blocks are correlated with pool (68%), ppp (56%) and
dial (54%) hostname categories.

We hypothesize that this low utilization is tied to dial-up
technology itself. Dial-up lines are often shared with voice
communication, encouraging short, intermittent use. Yet
dial-up POPs must be provisioned to handle peak loads.
A secondary factor may be trends shifting customers from
dial-up to higher speed connections. Perhaps old dial-up
provisioned blocks are simply in lower demand than pre-
viously. Finally, while dial-up utilization is low, we cannot
tell how many users each dial-up address serves. Perhaps ad-
dress reuse is high enough to make these apparently under-
provisioned addresses a bargain relative to supporting the
same number of users with always-on connections. Further
study to understand these trade-offs is future work.

Reversing the question, we can ask which blocks are well
utilized? Still by examining the hostnames, we found that
blocks with keywords static, cable, biz, res, server, router
have very few underutilized addresses. Static addresses are
usually assigned to fixed-location desktops or businesses,
and these computers tend to maintain Internet connection
and occupy their address for a fairly long time. In addition,
static addresses are often billed at a flat rate per month,
while dynamic addresses may incur a time-metered charge.

4.2.2 Locations and trends of underutilization
Evaluating underutilization by country may highlight pol-

icy differences by regional registries or ISPs. After merging
our data with RIR data, Table 3 shows utilization by coun-
try. We see that the United Kingdom and Japan have the
largest fraction of underutilized blocks, 40–60%, suggesting
potential local policy differences. We expected a large num-
ber of underutilized blocks in the U.S. because of wide de-
ployment of dial-up. While the U.S. has the largest absolute
number of underutilized blocks, its fraction is relatively low.

Table 4 shows that the fraction of underutilized blocks is
fairly consistent across all five RIRs, suggesting differences
are likely due to country, not RIR policies.

Finally, the lower right graph in Figure 3 shows when un-
derutilized blocks were allocated. The fraction of blocks by
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Figure 3: Trend of ping-observable category change
in IT17ws /24 blocks

age seems fairly evenly distributed, except for peaks in very
early allocations (1984 and unknown), where more than 60%
of the blocks assigned are underutilized. We believe these
earliest allocations were made with relatively little assess-
ment of organizational need, and large initial allocations al-
low continued use with minimal concern for efficiency.

4.3 Intermittent and Dynamic IP Addressing
Addresses are intermittently used by statically addressed

hosts that are only sometimes connected to the network, or
by hosts that obtain dynamically assigned addresses from a
pool, typically with DHCP [6].

Dynamic assignment of addresses allows ISPs to multi-
plex many users over fewer addresses. Dynamic addressing
also provides ISPs the business opportunity of offering static
addresses as a higher-priced service, and potentially makes
it more difficult for users to operate servers. Dynamic ad-
dressing has been promoted to users as a security advan-
tage, on the theory that a compromised computer is more
difficult to contact if its IP address changes. Dynamic ad-
dressing prevents users from running services or accepting
unsolicited inbound connections (for example, for incoming
SIP calls), although applications employ work-arounds such
as STUN [26].

Recent studies [13, 29, 31] have examined dynamic ad-
dressing for several reasons. First, dynamic addresses com-
plicate some network services, such as reputation systems.
They also are correlated with spam; some spam filters pe-
nalize dynamic addresses because of the frequent exploita-
tion of dynamically addressed home computers by spam-
mers. We next show that our approach can identify dynamic
addressees and suggest the causes and trends that have been
previously invisible.

4.3.1 Quantifying dynamic addressing
We believe that the intermittent and underutilized ping-

observable categories correspond to the short-term dynam-
ically assigned addresses of interest. Although we cannot
quantify what fraction of these categories actually use DHCP,
our belief is supported by hostname analysis. Hostnames
shows that intermittent blocks commonly include keywords
cable (57%), dynamic (48%) and dsl (41%), all of which of-
ten use short- or moderate-term dynamic addressing, and
underutilized blocks often include keywords for pool (68%),
ppp (56%) and dial (54%).

Table 2 shows that 40–50% of classifiable blocks (depend-
ing on block size) appear to be dynamic. Even with wide
deployment of always-on connectivity, nearly half of Internet
addresses are used for short periods of time. For intermittent

blocks, the mean availability is just under 30%, with nine use
periods over the week and a mean U∗ around 2.5 hours.

4.3.2 Locations and trends for dynamic addressing
Analysis by country can suggest how political, cultural

and policy factors affect addressing. Table 3 shows that
nearly two-thirds of Chinese blocks are intermittent, with
Germany, Korean, and Brazil all nearly half or more. Several
factors may contribute to this use.

China has a very large population and is a relative late-
comer to the Internet; from the beginning of commercial de-
ployment in China. ISPs have planned to make best use of
the relatively few IPv4 addresses per potential user. They
have therefore promoted dynamic use to improve address
utilization. An interesting direction for future work would
be to evaluate how effective their utilization is. Unfortu-
nately we only know address responsiveness, not the number
of actual computers users per address needed to answer this
question.

Time-metered billing is another reason for intermittent
use. Parts of China and Germany employ metered billing,
encouraging intermittent use even with broadband. Other
potential reasons for intermittent use include turning off a
router to conserve energy, or carrying over habits learned
from dial-up use to broadband, and potentially continued
use of dial-up connections shared with voice communication.

Evaluation of usage by registry (Table 4) shows larger dif-
ferences in use. We see that intermittent blocks are very
prominent under APNIC and LACNIC (40–53%), five times
more common than for ARIN in North America (9%). We
believe these differences stem largely from policies of the
countries the RIRs serve, not the RIRs themselves. We dis-
cussed Chinese practice above; several Latin American coun-
tries have limited choice in ISPs, with national providers
adopting pricing or policies that strongly favor dynamic ad-
dress assignment even for business use (as confirmed by
LACNIC personnel [21]). We speculate that the large num-
ber of sometimes-stable blocks in ARIN is because of long
DHCP lease times and always-on use by home users, enabled
by relatively plentiful numbers of IPv4 addresses per user.

Finally we consider trends in dynamic addressing. The
lower left of Figure 3 shows that intermittent blocks are
more common in new address allocations. This observation
is consistent with a recognition of eventual full allocation
of the IPv4 address space and efforts to manage addresses
in countries newer to the Internet. The rise in intermittent
blocks matches a corresponding fall in always-stable blocks
(top left, Figure 3). In addition to growing demand for
dynamic addressing, this trend suggests most new addresses
are added to provide service for home users, intermittently.
While the absolute numbers of always-stable businesses and
servers grows, its fraction of all addresses is shrinking.

4.4 Understanding Edge Bitrates
To understand causes for utilization, we next look at block

connectivity to the Internet.
In §[3.5.2] we suggested that RTT variance can indicate

low-bitrate edge links such as dial-up and pre-3G mobile
telephones. Here we apply this analysis to provide a new
tool to understand how edge networks correlate with under-
utilization. Future work includes using this analysis to eval-
uate deployment trends and to automatically adapt websites
to the user’s network.

To understand the usage of low-bitrate blocks, Figure 4
shows the availability for blocks broken into low- and non-



sometimes- classifiable unclassifiable blocks
code country always-stable stable intermittent underutilized (100%) [100%]
US US 673(27%) 1,106(45%)* 231(9.3%) 472(19%) 2,482 1,383 [36%] 3,865
CN China 39(4.1%) 117(12%) 615(65%)* 171(18%) 942 132 [12%] 1,074
JP Japan 383(48%)* 50(6.2%) 18(2.2%) 350(44%)* 801 288 [26%] 1,089
DE Germany 65(10%) 125(20%) 388(61%)* 62(9.7%) 640 56 [8.0%] 696
KR Korea 21(4.6%) 131(29%) 237(52%)* 68(15%) 457 142 [24%] 599
FR France 18(4.1%) 227(52%)* 167(38%) 28(6.4%) 440 58 [12%] 498
GB UK 39(13%) 37(12%) 52(17%) 179(58%)* 307 180 [37%] 487
BR Brazil 7(3.9%) 35(19%) 86(48%)* 52(29%) 180 58 [24%] 238

all others 358(14%) 689(27%) 879(35%) 612(24%) 2,538 1,114 [31%] 3,652
/24 blocks in entire IT17ws dataset: 8,787 3,411 [27%] 12,198

Table 3: The distribution of /24 blocks in ping-observable categories of 10 countries. Bold and asterisks
indicate the categories with more than 40% of blocks. Colors indicate categories and each country’s dominant
category. Countries are sorted by total number of blocks.

sometimes- classifiable unclassifiable blocks
registry always-stable stable intermittent underutilized (100%) [100%]

RIPENCC 408(14%) 798(27%) 1,084(37%)* 661(22%) 2,951 990 [25%] 3,941
APNIC 473(18%) 422(16%) 1,091(40%)* 716(27%) 2,702 795 [23%] 3,497
ARIN 706(27%) 1,185(45%)* 258(9.7%) 512(19%) 2,661 1,481 [36%] 4,142

LACNIC 13(3.2%) 94(23%) 218(53%)* 86(21%) 411 120 [23%] 531
AFRINIC 3(4.9%) 18(30%) 21(34%)* 19(31%) 61 19 [24%] 80
/24 blocks in entire IT17ws dataset: 8,787 3,411 [27%] 12,198

Table 4: The distribution of /24 blocks in ping-observable categories of 5 regional registries. Bold and
asterisks indicate the categories with more than 40% of blocks. Colors indicate categories and each registry’s
dominant category. Registries are sorted by total number of blocks.
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Figure 4: Comparison of availability for low-bitrate
(top line) and non-low-bitrate (bottom line) classi-
fiable /24 blocks in IT17ws.

low-bitrate groups by RTT stability (as defined in §[3.5.2]).
From the underutilization threshold of A(b) < 0.1, we see
that nearly 80% of low-bitrate blocks are underutilized, com-
pared to only 20% of non-low-bitrate blocks. Therefore low-
bitrate connections strongly correlate with sparse use.

To explain this correlation between edges and underuti-
lization, we use hostnames and whois to infer operational us-
age—roughly, how blocks are managed (dynamic or static)
and what type of edge-link they are (dial-up, PPP, DSL,
etc.). Such inferences are less than ideal, but they provide
the best available ground truth about the general Internet.
Among the 200 randomly selected low-bitrate blocks, we suc-
cessfully inferred the operational usage of 46 blocks: 41 dial-
up, 2 PPP, and 3 DSL blocks. Dial-up and PPP are indicator
of low-bitrate edge connection while DSL is one representa-
tive of broadband connection. While not providing definitive
causes of underutilization, this suggests correlation between
low use rates, low bitrates, and dial-up edge networks.

To support this explanation, we studied the median-uptime
U∗ for both low-bitrate and broadband blocks (data omit-

ted due to space). We found that up durations in the vast
majority of low-bitrate blocks are quite brief: 85% of low-
bitrate blocks have a U∗(b) < 0.5 hours, compared to only
15% of other blocks. This observation suggests that low-
bitrate, dial-up blocks are provisioned for a large number of
potential users who do not use the network concurrently.

5. VALIDATION
We have now shown data to support our three assump-

tions: addresses respond to probes (the subject of prior
work [13]), adjacent addresses have similar use (§[4.1]), and
probes suggest use (§[4.2]). These results have two limita-
tions, however. First, since they are based on active probing,
they are only available for the portion of the Internet that
respond to probes. Evidence suggests that somewhat more
than half of the publicly addressed hosts respond [13]; ex-
tension of these results to the whole Internet is an area of
continuing work. Second, our conclusions are based on data
taken from one survey (IT17ws) from the general Internet.
While not biased, we cannot compare these results to the
true network configuration that is distributed across thou-
sands of enterprises.

We next present three additional studies to further vali-
date these assumptions and address the second limitation.
First we evaluate data taken from USC, a smaller and poten-
tially biased dataset, but one where we have ground truth
from the network operations staff. We then extract small
random subsets of the general Internet and infer the ground
truth by manual inspection using ISC-DS hostname data [15]
and the whois database. Finally, we compare our Internet-
wide results with additional data taken one-half to two years
later to verify that our conclusions do not reflect something
unusual in a single measurement or time.

5.1 Validation within USC
We first compare our methodology against ground truth

obtained directly from the network operators at USC. This



category: blocks percentage
in routing table 243 100%

false negative 105 43%
not in use 19
not responding 28
few responding 12
single-block multi-usage 46

/25 to /27 9
/28 to /32 37

blocks identified 147 100%
correctly identified 138 57% 94%
false positive 9 6.1%

multi-block single-usage 9

Table 5: Evaluation of accuracy of block identifica-
tion USC to ground truth sizes.

section uses dataset USCs and applies the same analysis
used on our general Internet dataset.

Block identification and classification at USC shows a sim-
ilar prevalence of /24 blocks (85% of USC addresses are in
/24s, compared to 61% in the Internet). However, USC
shows many fewer intermittent and underutilized blocks com-
pared to the Internet (only 8% among classifiable /24 blocks);
we expect such variation across enterprises. We next use this
data to evaluate how our assumptions affect our ability to
accurately find block size, consistency, and usage.

5.1.1 Validation of block identification and sizes
To validate our estimation of block sizes, we compare our

analysis with the internal routing table from our network
administrators. This data helps quantify the accuracy of our
approach, measuring the false positive rate, blocks that we
detect but that do not actually exist, and the false negative
rate, blocks that exist but we fail to detect.

Table 5 summarizes our comparison for all /24 blocks.
(Smaller blocks are not present in our ground-truth rout-
ing table.) We find our approach correctly identifies 57% of
all blocks in ground truth. Although we find the majority
of blocks, we have a significant number of false negatives,
failures to detect blocks. For this dataset, these false neg-
atives show our approach is somewhat incomplete. On the
other hand, if we evaluate our algorithm by what it says, we
see very few false positives, correctly identifying 94% of all
blocks we detect. For this dataset, almost no false positives
show our approach is quite accurate in what it asserts.

To understand accuracy, we looked at when our approach
incorrectly identifies blocks. All nine false positives are
due to multiple blocks with common usage. We examined
each incorrect block and found that USC administrators had
placed two logically different blocks on adjacent addresses,
but these administratively different blocks were used for sim-
ilar purposes. Since our evaluation is based on external ob-
servations of use, we believe there is no way any external
observer could determine these administrative distinctions.

For false negatives, we found several sources of missed
block identification. We found that many blocks were either
in the routing table but not assigned to locations or services
(19 not in use), or in the routing table and assigned, but
with no ping responses (28 not responding), or filled with
only a few responders (12 few responding). In each case,
our algorithm refuses to make usage assertions on unused
or sparsely used space. Non- or few-responding blocks may
be due to firewalls, reflecting a limitation of our probing
method. Not-in-use blocks would be impossible for any ex-
ternal observer to confirm. In principal our algorithm could

category: blocks percentage
classified 138 100%

unclassifiable (false negative) 52 38%
incorrectly classified (false positive) 3 2.1%

always stable (dynamic) 3
correctly classified (true positive) 83 60%

intermittent (dynamic) 4
sometimes stable (dynamic) 5
intermittent (VPN) 1
underutilized (VPN/PPP) 2
always stable (lab) 2
sometimes stable (lab) 2
always stable (building) 25
sometimes stable (building) 42

Table 6: Evaluation of block classification accuracy
at USC to ground truth.

identify non-responsive blocks, but it is difficult for external
observation to distinguish unused from firewalled space.

Finally, other false negatives occur due to blocks that have
been administratively assigned as /24s but then are used for
different purposes. Nine of these show large, consistent pat-
terns, possibly indicating delegation at the department level
that is not visible to university-wide network administra-
tors. If so, these represent incompleteness in our ground-
truth data. Smaller mixed-use blocks represent violations of
our assertion that adjacent addresses are used consistently.

5.1.2 Validation of block classification and usage
Table 6 shows the accuracy of our approach for the 138

blocks we classify. We declare 38% unclassifiable (false neg-
atives); here we have discovered the correct block size but
decline to declare a ping-observable category because the
block is only sparsely responsive. We correctly classify the
majority of blocks, selecting ping-observable categories that
are consistent with the use of 60% of blocks. We mis-identify
three blocks (a 2% false positive rate), all reported as dy-
namically allocated but observed as always stable. These
blocks perhaps represent DHCP-assigned addresses with very
long lease times for computers that are always up.

5.1.3 Validation of edge bitrate
We also validated our edge-bitrate assessment. USC has

only two low-bitrate blocks (dial-up blocks running PPP).
Experimental evaluation of LTUSCs successfully identifies
both as low-bitrate, and does not mis-identify any of the
136 other blocks as low-bitrate. While this 100% accuracy
is reassuring, the proximity of prober and target suggests
that our validation with random Internet blocks (§[5.2.3]) is
a more general result.

5.2 Validation in the General Internet
Our main validation results use USC because there net-

work operations can provide ground truth. We would like
to evaluate how well our approach works on the general In-
ternet as well, since commercial use may differ from USC.
We evaluate our ping-observable classification results for 100
randomly selected /24 blocks, and enlarge the sample size
for our edge-bitrate validation in §[5.2.3].

While we cannot get ground truth from network opera-
tions for the general Internet, we can get clues about block
size and usage from hostnames and the whois database.
Hostnames are often assigned in patterns that suggest com-
mon administration and access method. For example, host-
names in 4.168.174/24 follow the convention dialup-4.168.

174.*.dial1.losangeles1.level3.net. Such consistent nam-
ing conventions strongly suggest a common administrator

dialup-4.168.174.*.dial1.losangeles1.level3.net
dialup-4.168.174.*.dial1.losangeles1.level3.net


category: blocks percentage
/24 randomly selected 100 100%

decided (/24 inferred from hostname) 37 37% 100%
correct 25 68%
wrong (false negative) 12 32%

few responding 6
single-block multi-usage 6

undecided 63 63%
no hostname 45
few hostnames 7
potential /24 inferred 7

correct 7
has sub-/24 groupings 4

Table 7: Evaluation of block identification accuracy
of random Internet blocks.

(in this case, Level 3). Second, the presence of “dial” in
the name suggests dial-up usage and low-bitrate connec-
tion. Whois information provides an alternative view. For
example, hostnames in 70.204.31/24 follow the convention
*.sub-70-204-31.myvzw.com. Names suggest common ad-
ministration, but not how it is used. Whois indicates this
block is assigned to Cellco Partnership DBA Verizon Wire-
less, suggesting mobile phone usage.

5.2.1 Validation of block identification and sizes
We randomly select 100 /24 blocks probed, and compare

their clustering results with our best estimates about the
ground truth from manual analysis of hostname and whois
in Table 7 (37 are identified as /24 by hostnames).

As shown in Table 7, the correctly identified rate (68%)
is even higher than the one in USC validation (57%). The
reason is that address space in the general Internet is used
in a bigger granularity than campus network, thus, blocks
tend to be more consistent.

5.2.2 Validation of block classification and usage
To validate the ping-observable classification, we look at

the 25 correctly identified /24 blocks in the previous 100
random /24 blocks. To validate the low-bitrate classifica-
tion, because of the low percentage of low-bitrate blocks, we
enlarged our random sample to 200 /24s.

About ping-observable classification, of the 25 correctly
identified /24 blocks, we classified 20 of them; 5 were unclas-
sifiable because of lack of hostname and whois information.
We omit the details due to space, but we found 85% (17
of the 20) were correctly classified, using a loose mapping
from hostnames to our ping-observable categories, while we
only incorrectly classified one. For example, hostnames for
three blocks suggested servers; two of those were identified
as always stable (a true positive), one was identified as some-
times stable, our only false positive. Because the mapping
from hostname-to-ping-inferred category is not one-to-one,
our estimates of “ground truth” here are imprecise and we
do not claim this result is definitive, but merely suggestive
that our classification works well over the general Internet.

5.2.3 Validation of edge bitrate
Among the random 100 /24 blocks, only 10 of them (6 dsl

& 1 cable, 1 dial & 2 mobile-phone) can be used as ground
truth to validate our edge-bitrate assessment. Known low-
bitrate blocks are rare in the Internet, thus we want to have
more samples to validate our edge-bitrate assessment. Sim-
ply adding more random blocks to the previous 100 blocks
and manually inspecting them is time-consuming. So we
use an automatic way, although a little coarser, to add more
samples. We randomly pick only classifiable /24 blocks with

category: blocks percentage
hostname-inferrable edges 36 100%

low-bitrate blocks (6 dial, 2 mobile) 8
R∗

µ
1/2

,σ(b) > δ (true positive) 8

R∗

µ
1/2

,σ(b) ≤ δ (false negative) 0 0%

broadband (21 dsl, 4 cable, 3 3G) 28
R∗

µ
1/2

,σ(b) > δ (false positive) 0 0%

R∗

µ
1/2

,σ(b) ≤ δ (true negative) 28

clear hostname 25
confusing hostname 3

Table 8: Evaluation of low-bitrate block classifica-
tion accuracy of commercial blocks.

consistent naming convention in hostnames that have cer-
tain keywords (dsl, cable, dial) indicating edge access link
type. This process can be easily automated with hostname
data only without querying the whois database. Thus, in
addition to the previously identified 10 blocks, we add 26
random hostname-inferrable edges blocks, for a total of 36
blocks as ground truth. Table 8 summarizes our analysis.

For the 36 blocks where we can infer edge types to eval-
uate accuracy, we successfully classify all low-bitrate blocks
and all broadband blocks. Our low-bitrate detection algo-
rithm provides an 0% false-negative rate and a 0% false-
positive rate. There were three confusing-hostname broad-
band blocks classified into low-bitrate. These blocks have
dial in their hostnames. However, when we confirmed with
the ISP’s network operations, these blocks are actually fast
3G/UMTS wireless connections. Their R∗

σ values are 20ms,
41ms and 43ms respectively, suggesting 1Mb/s links or faster.

5.3 Consistency Across Repeated Surveys
We next wish to understand if the parameters of our

data collection or analysis have a disproportionate effect on
our conclusions about Internet-wide address usage. To do
so, we compare analysis of IT17ws with that of three new
datasets, IT16ws, taken five months earlier; IT30ws and
IT31ws, taken 30 months later. These surveys allow us to
consider both adjacent surveys at two different times, and
longer-term trends. Half of the /24 blocks in the survey are
consistent across each survey, and half are randomly cho-
sen in each survey (full details of selection methodology are
elsewhere [13]). This comparison therefore observes whether
network changes alter observations of the same blocks, and
whether different sets of blocks show very different behavior.

Our estimates of the block size distributions are almost
identical in the four surveys. If we define sp as the vector
of number of blocks of prefix length p, the correlation coeffi-
cient of the vectors for IT17ws against all other surveys are
all above 0.9989. We conclude that a random sample of 1%
of the Internet is large enough that the block size observa-
tions are hardly affected if half of the sample is changed.

Our work assumes that contiguous addresses are often
used consistently. Following §[4.1], we consider blocks of
size /24 through /26 as consistent, and size /27 through /32
as inconsistent. These percentages are quite consistent in
adjacent surveys, with a possible slow downward trend over
time: In IT17ws, 44% of probed Internet, going to 43% in
IT16ws, and 38% later in both IT30ws and IT31ws. Re-
sults are similar if we consider percentage of the responsive
Internet, with 60% and 61% in IT16ws and IT17ws, and
57% and 58% in the later two surveys.

Finally we consider the temporal consistency of our ping-
observable classification across four surveys. We show that

*.sub-70-204-31.myvzw.com


temporarily adjacent surveys show consistent classification
results, while more distant surveys show greater divergence.
First we compare each adjacent pair of surveys. For IT17ws
and IT16ws, initially we found the correlation of the num-
ber of blocks in each category to be generally good but not
great across all block sizes—it ranged from 0.663 to 0.938 for
blocks smaller than /29, but the correlation for /24 blocks
was only 0.349. Examination showed that around 500 blocks
were shifting between always- and sometimes-stable. This
shift occurred because of a change in volatility and our se-
lection of the always-stable requirement that V (b) ≤ β and
β = 0.0016. For very stable hosts, a few outages can change
V ∗(b) significantly. Examination showed that IT16ws and
IT17ws are of different duration (6 and 10 days). A longer
duration makes it easier to distinguish between sometimes-
and always-stable blocks. When we keep the observation
duration constant by considering only a 6-day subset of
IT17ws, the correlation coefficient for /24 classification rises
to 0.626. We conclude that most ping-observable classifica-
tions are good, but the separation between sometimes- and
always-stable categories is somewhat sensitive. We plan to
investigate the sensitivity in future work by down-sampling
the survey data in time. We confirm this result by com-
paring the later surveys, where full 14-days of IT30ws and
IT31ws show the correlations ranging from 0.77338 to 0.987.
Thus we conclude that results taken near the same time are
fairly consistent.

We next compare surveys taken two years apart: IT17ws
and a 6-day subset of IT31ws (data for IT31ws is in [4] due
to space constraints). There are two main differences: first,
many blocks shift from sometimes-stable to always-stable,
where IT31ws has 2,459 always-stable /24 blocks compared
to only 2,001 before (33% vs. 23%). The percentage of
intermittent and underutilized blocks is similar. Second, we
see a larger number of /32 blocks in the later survey, up to
198k from 179k, with many of the new blocks shown as /32
always-stable blocks. This change may represent additional
servers on the Internet. As described above, we know the
always/sometimes-stable border is sensitive to observation
duration, so future work is required to understand whether
these shifts are meaningful.

6. CONCLUSION
We have shown that active probes can identify how Inter-

net addresses are used, confirming that contiguous addresses
are often used similarly. We have validated our claims at
USC, against randomly selected Internet blocks, and over
multiple years. Within the constraints of active probing,
our approach provides a new tool to understand Internet
use and trends.3
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