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Abstract

Pervasivenetworksof micro-sensorsandactuatorsoffer
to revolutionizethe ways in which we understandand
constructcomplex physicalsystems.Sensornetworks
mustbe scalable,long-lived androbust systems,over-
coming energy limitations and a lack of pre-installed
infrastructure. We explore threethemesin the design
of self-configuringsensornetworks: tuning densityto
tradeoperationalquality againstlifetime; usingmulti-
ple sensormodalities to obtain robust measurements;
andexploiting fixedenvironmentalcharacteristics. We
illustratethesethemesthroughtheproblemof localiza-
tion, which is a key building block for sensorsystems
thatitself requirescoordination.

Keywords- low-powerwireless,sensornetworks,lo-
calization,self-configuration,localizedalgorithms.

1 Intr oduction

Recenttechnologicaladvanceshave fosteredthe emer-
genceof small, low-power devices that integrate mi-
crosensingandactuationwith on-boardprocessingand
wirelesscommunicationscapabilities.Whendeployed
in large numbersand embeddeddeeplywithin large-
scalephysical systems,thesedevices gain the ability
to measureaspectsof the physicalenvironmentin un-
precedenteddetail. Throughdistributed coordination,
pervasive networksof micro-sensorsandactuatorswill
revolutionizethewaysin whichweunderstandandcon-
structcomplex physicalsystems.[EGHK99]

Therearemany potentialapplicationsof sensornet-
works: physiologicalmonitoring; environmentalmon-
itoring (air, water, soil, chemistry); condition based
maintenance;smartspaces;military surveillance;preci-
sionagriculture;transportation;factoryinstrumentation
andinventorytracking.Thispaperwill addressrequire-
mentsanddesignthemesfor thesedenselydistributed,
physicallycoupledandwirelesssensornetworks.�

This researchwassupportedby DARPA undergrantDABT63-
99-1-0011aspartof theSCADDSproject,NSFgrantANI-9979457
aspartof theSCOWR project,andwasalsomadepossiblein partdue
to supportfrom Ciscosystems.

Due to the sheernumbersof nodesinvolvedandthe
particular needsof applications(eg. emergency ser-
vices), thesesystemsmust be ad hoc deployable. In
extremecases,nodesmay be droppedfrom an aircraft
in a remoteterrain;however, evenassumingindividual
placement,thescaleof thesystemandvariationsin the
environmentrequirethat they self-configureandadapt
to their environmentwithoutuserintervention.Because
wiring is often impractical,nodesmustbe untethered.
Thisrequirementstemsfrom many factors,includingre-
moteness(wildlife monitoring),mobility, andthe need
for ad hoc deployment. Oncedeployed, thesesystems
must operatedespitebeing largely unattended, since
nodesmay be inaccessible,whetherdue to their tight
physicalcoupling(largeindustrialplants,aircraftinteri-
ors)or inhospitableterrain(toxic or urbanlocations).

The above requirementsimposesubstantialphysical
constraintsat both the nodeandsystemlevels. Nodes
mustbe small for unobtrusive monitoring. Sincethey
areuntethered,their energy sourcesmustbe on-board,
and is often relatively small. The systemas a whole
musttoleratead hoc deploymentandunattendedoper-
ation without infrastructuresupport. Given suchcon-
straints,the network designers’goalsshift towardsex-
tendingsystemlifetime and robustnessin the faceof
unpredictabledynamics,rather than focusingon opti-
mizing channelthroughputor minimizing nodedeploy-
ment.

Although in most systemscentralizedsolutionsare
preferredfor simplicity, several constraintsof wireless
sensornetworks make centralizationexpensive andof-
teninfeasible.Nodeenergy limitationsplacenumerous
constraintson communication[PK00]. In addition,ra-
diosusedin sensornetworksareoftenquite low band-
width (10-20Kb/s). Finally, systemdynamics(node
movementor failureandchangesin radiopropagation)
with largenumbersof nodesmake a globalpictureex-
pensive to getandimpossibleto maintain.

Localizationis an importantbuilding block for sen-
sor networks andis itself a sensornetwork. We useit
asour exampleto motivatetheneedfor automaticself-
configuration through adaptive localized algorithms.
A localizedalgorithm is a distributed computationin
which sensornodesachieve a desiredglobal objec-
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Figure 1: Localization - an examplesensornetwork.
Beaconsself-organizeinto a coordinatesystemusing
pairwisedistanceestimatesobtainedby acousticrang-
ing. Othernodesmaydeterminepositionto bethecen-
troid of proximateradiobeacons.

tive while constrainingtheir communicationto sensors
within someneighborhood[EGHK99].

In this paper, we explore coordinationin wireless
sensornetworksbasedon adaptive localizedalgorithms
that exploit both the local processingavailableat each
node as well as the redundancy available in densely
distributed sensornetworks. We introducethe design
themesof density, multiple sensormodalitiesandadap-
tationto fixedenvironments,andshow how they canbe
appliedto build self-configuringlocalizationsystems.

2 NodeLocalization

Unlike the Internet,wirelesssensornetworksareorga-
nizedaroundthenamingof data,not nodes[EGHK99].
Nodesareneitheruniquenor reliable;applicationsex-
pressaneedfor aparticulardataelementor typeof data
by namingit directly. By eliminating indirection, e.g.
the mappingfrom a nameto a nodeaddressto a route,
a sensornetwork can eliminatethe maintenanceover-
headassociatedwith constructingandmaintainingthese
mappingsanddirectoryservices.

Becausesensordataareintrinsically associatedwith
the physical context of the phenomenabeing sensed,
spatialcoordinatesareoftenanaturalwayto namedata.
Spatialcoordinatesarealsoemployedby collaborative
signal processingalgorithms(e.g. beamforming)that
combinedatafrom multiplesensornodesfor suchtasks
as target tracking. Furthermore,geographicassistance
in adhocroutingpromisessignificantreductionsin en-
ergy consumption[KK00, XHE01].

The problem of estimating spatial coordinatesis
known aslocalization,andhasgeneratedmuchinterest
in recentyears[BP00, BHE00, DPG01, Gir00, WJH97,
NB00, PCB00,SHS01]. When sensornodesare de-
ployed in an unplannedtopology, thereis no a priori
knowledgeof location.Device constraintssuchascost,
form factor (including antennasize) and power con-
sumptionmay precludethe useof GPSon all nodes.
Moreover GPSdoesnot work indoors,underwater, or
in the presenceof overheadobstructionssuchasdense
foliage.Thus,in many scenarios,sensornetwork nodes

will needto determinetheir relative positionsandself-
organizeintoaspatialcoordinatesystemwithoutrelying
onremoteinfrastructuressuchasGPS.

Sucha localizationsystemis in itself an exampleof
a wirelesssensornetwork, as it involves a collection
of networked nodescollaboratingto achieve a higher
level task: a coordinatesystembasedon sensorymea-
surementsof the physicalenvironment(suchassignal
strength,signal propagationcharacteristics,or packet
deliveryrates).

A sensornetwork may be organizedas a tiered ar-
chitectureof nodes,perhapswith a mix of small PC-
classnodes(32-bit CPUs, ����� bytesRAM/Flash) and
smaller nodessuch as UCB Motes [HSW	 00] (8-bit
CPUs, �
��� bytesRAM, ����� bytesFlash). By mixing
nodesizes,verysmall-form-factornodescanbedensely
deployed andphysicallyco-locatedwith targets,while
larger but morecapablenodesarestill availablewhen
needed[CEE	 01]. Becauseindividualnodecapabilities
arequitevaried,we requirea federationof localization
approaches(seeFigure1).

Multilateration algorithms: In one approach,sen-
sornodesmeasurea sufficient numberof pair-wisedis-
tanceestimates,andthenusemultilaterationalgorithms
for positionestimation.Onepromisingrangingtechnol-
ogy usesa combinationof radio and acousticsignals,
usingthemuchfasterradiosignalto establishtimerefer-
enceandthetimeof flight of acousticsignalsto estimate
distance[Gir00]. Sensornodeswith thesecapabilities
canindependentlyform a relativecoordinatesystem.

Proximity-basedLocalization: Suchnodescanactas
beaconsfor smallerdevicessuchastheUCB motesthat
maynot havethehardwarecapabilityfor acousticrang-
ing. A beaconwouldperiodicallybroadcastits position.
By listening to broadcastsfrom a collectionof nearby
beaconsandinferring proximity to thosebeaconswith
low messageloss,eachnodecouldestimateits position
to bethecentroidof its proximatebeacons[BHE00].

Iterative Multilateration: If the densityof beacons
is not sufficient in someareasof the sensornetwork,
the proximity-basedlocalizationcanbe augmentedby
themorecostlyandperhapslesspreciseapproachof it-
erative multilateration,in which beaconinformation is
propagatedthroughmultiplehopsto enablelocationes-
timationin areasof low beacondensity[SHS01].

All theaboveapproachesaresensitiveto environmen-
tal vagaries.The problemsthat ariseinclude(i) incor-
rectrangemeasurementsdueto nonline-of-sightcondi-
tionsfor acousticranging,(ii) errorin RSSI-basedrang-
ing causedby variationsin channelparametersacross
differentenvironments( ��
���� models),(iii) poor corre-
lation betweenRSSI and distanceowing to multipath
interferenceandfading,and(iv) insufficient numberof
reachablebeaconsor interferenceamongstdenselyde-
ployed beaconsfor proximity-basedlocalization. We
arguebelow thatsuchproblemscall for theuseof self-
configuringlocalizedalgorithms.

Since almost all ranging techniquesrely on signal
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propagationcharacteristics,they aresusceptibleto ex-
ternalfactorssuchasinterference,multipatheffectsand
changesin temperatureandhumidity. Thesignalpropa-
gationcharacteristicsof bothradioandacousticsignals
maychangewith variationsin thesurroundingenviron-
ment.Thesephysicaleffectsaredifficult to predictand
canleadto incorrectrangemeasurementswhich would
greatly affect the quality of localization in our multi-
lateration and iterative multilateration approachesdis-
cussedabove.

Beaconplacementand densitycan significantly af-
fect the quality of localization in our proximity-based
localization approach[BHE01a]. We cannotrely on a
uniform placementof beaconsas propagationcharac-
teristicsof low power radiocommunicationscansignif-
icantly affect the visibility of beaconseven whenuni-
formly placed.An intuitiveway to solve thisproblemis
to deploy a largenumberof beacons.Theproblemwith
this approachis that we cannothave all deployed bea-
consturnedon simultaneouslybecauseof the possibil-
ity of interferenceamongseveralbeaconsvying for the
communicationchannelaswell asexcessiveenergyuse.
In simpleandsmall structuredenvironments(indoors,
factoryautomationplantsetc.),wecouldperhapsmodel
andcarefullyplaceexactly theright numberof beacons.
However, this approachis not usefulwhenwe deploy
largesystemsin dynamic,unpredictableenvironments.

Two characteristicsare clearly desirablein practi-
cal solutionsto the problemsdescribedabove. First,
theoverall systemmustdynamicallyandautonomously
adapt(self-configure) andreconfigureto theparticulars
of its environmentalsetting. Second,dueto scalability
andenergy-efficiency considerations,andbecauseenvi-
ronmentalcharacteristicscan vary widely even within
a single region of interest,self-configurationmust be
achieved by individual beaconsusing localized algo-
rithms.

3 DesignThemes

Becausesensingandactuationdefinea physicalscope
to a node’s influence, localized algorithmsprovide a
naturaldesignparadigmfor physicallydistributedsen-
sor networks. More importantly, localizedalgorithms
are attractive becauseof their scalability and robust-
ness.Localizedalgorithmsscalewell with network size
sincescalingis influencedby densityratherthanphys-
ical extent, thereforealgorithmcomplexity grows with
the degreeandnot total sizeof the graphs.Sincethey
areself-configuring,they canalsobeself-re-configuring
and thuscanbe robust to network partitionsandnode
failures.

In this section, we elaborateupon a few design
themesthat arise in the application of adaptive lo-
calized algorithmsfor scalablecoordinationand self-
configurationin wirelesssensornetworks.

3.1 Density

Density is an important parameterin physically dis-
tributedsystems,bothdensityof thesolutionspaceand
of nodes.We formalizethesenotionsbelow.

3.1.1 Solution SpaceDensity

Localizedalgorithmsaremosteffectivewhentheprob-
lemsolutionspaceis dense,thatis, agivenproblemhas
a large numberof satisfyingsolutions.Sincelocalized
algorithmswork with limited local information,wecan-
not usethemto solve problemswhereinwe needto de-
terminea global optimal solution. Becausewe do not
have accurate,general,modelsof the physicalworld,
measurementis neededand is well suitedto localized
algorithms.An exampleis our self-configuringbeacon
placementalgorithmswhereinbeaconslocally measure
theirneighborsandmessagelosstodeterminetheirroles
(beactiveor passive).

3.1.2 Network Density

Localizedalgorithmsaremoreeffective whenthe net-
work itself is dense.Wecanexpressthenetwork density������� in termsof numberof nodespernominalcoverage
area.Thus,if � nodesarescatteredin a region of area�

, andthenominalrangeof eachnodeis � ,��������� � �"!#� ��$� % (1)

Note that the range � canbeeitherthe rangeof a par-
ticular sensoror theradiotransmissionrange(idealized
with circularpropagation).In eachcase,theassociated
network densitywill bedifferent.

Variousphenomenasaturateat a certaincritical net-
work densityparticular to them. Beyond this critical
nodedensity, additionalnodesdo not necessarilypro-
vide additionalsensing,communicationor coveragefi-
delity andareessentiallyinterchangeable.For instance,
KleinrockandSilvestershow thatin awirelessnetwork
with a uniform distribution of nodes,when ������� is 6
nodes,the probability thata nodeis connectedreaches
1 [KS78] regardlessof actualnodeplacement.

For problemswheresucha critical saturationdensity
exists,thesolutionspacedensity& canberelatedto net-
work density. Let ' be the critical densityrequiredto
accomplishacertaintask.Is �������)( ' , only asubsetof' nodesin any local neighborhoodof size ������� needs
to participatein thetask.

Thesizeof thesolutionspace& , is thenumberof dis-
tinct subsetsof nodesthatcouldbeactive in any neigh-
borhood.

& � * �������' + (2)

In otherwords,for a given ' , &-, �������/. , andgrows
rapidlywith ������� .
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3.1.3 Controlling Density by Changing Radio
Power

How can we control network density? In many next
generationsensornodes,we canrealisticallyexpectthe
radio transmit power level of a node to be software-
controllable [HSW	 00]. Assuming the receiver and
transmittergainsremainthe same,the nominal trans-
missionrangeof a radio � is typically a functionof its
transmitpower level 021 . For instance,accordingto the
Friis FreeSpaceradiopropagationmodel[Rap96], the
receivedpowerat distance3 ,

054 � 3 � , 0 13 $ (3)

If thethresholdpower for receptionis 0 1�6 , then0 4 ������� 0 1�6 (4)

Thus � , 021879 (5)

However, at very short rangesradio shadowing effects
can attenuatespecific frequencies,so the use of fre-
quency hoppingtechniquesis important. The correla-
tion of rangewith transmitpower in many casesmay
be non ideal,non radial,evennonmonotonicandcon-
cave. However, multiple power levelscanstill be used
asacoarseadjustmentof network density. For instance,
if � $ ,:021 , thendoublingthetransmitpower level can
achievetwice thenetwork densityin Eqn.1.

Additionally, multiplepowerlevelscanbeusedto get
moreinformationaboutthesystem.For instance,multi-
hop communicationbreaksdown at network partitions
as thereare no nodesen route. By transmittingat a
higherpower, informationaboutsuchpartitionscanbe
communicated.Finally, multiple power levels can be
usedto constructa tieredarchitecturethat takesadvan-
tageof heterogeneouscapabilitiesandreach[CEE	 01].

Assumingbeaconsaredistributeduniformly at ran-
dom,proximity-basedlocalization[BHE00] saturatesat
a certainbeacondensity[BHE01a] When thereare re-
dundantbeacons,the systemwill be expendingunnec-
essaryenergy andbeaconsmay interferewith onean-
other by congestingthe communicationchannel. Our
challengeis to find theright balanceof beaconsthatpro-
vide basicbeaconcoverageandareconducive to good
localizationquality. Basedon our principlesof solution
spaceandnodedensity, we know localizedalgorithms
maybeappliedhere.

Our solution is termed STROBE, for Selectively
TuRning Off BEacons[BHE01b]. Our basicapproach
is to extend systemlifetime by exploiting the redun-
dancy provided by densesensornetworks. Beacons
in STROBE can be in either one of two active states
(LISTEN-BEACON,BEACON-ONLY)1 or in apassive

1Two active statesareneededbecauselisteningincursenergy cost.

state(SLEEP)and transitionbetweenthesestatesde-
pendingon the numberof their active neighborbea-
cons. While maintainingthe desiredthresholdlocal-
izationgranularityacrosstheterrain,STROBE bothre-
ducestheself-interferenceamongstseveraltransmitting
beaconsand improvessystemlifetime by probabilisti-
cally turningoff redundantbeacons.By tuningit based
on systemand node energy consumptionparameters,
STROBEcanbemadeenergy efficient.

3.2 Multiple SensorModalities

Any individual modeof sensingcanbeblockedor con-
fusedby the environment. Leveragingmultiple sensor
modalitiesis oneway to achieve robustnessdespiteun-
predictableenvironmentalcharacteristics[GE01]. For
every sensorysystem,thereexistsa setof environmen-
tal conditionsthatwill confuseit, anda subsetof those
in which it fails to identify that it is confused. How-
ever, differentsensorymodalitiesareoften orthogonal
to eachother, in thesensethat their setsof failurecon-
ditionsarelargelydisjoint. We contendthatwe canim-
provethequalityof oursensorobservationsthroughco-
ordinationand communication,with significantly less
effort relativeto theeffort requiredto incrementallyim-
prove the sensorson their own, simply by usingthese
“orthogonal”modalitiesto identify eachothers’failure
modesandrejectbaddata.

Basedon theseideas, we are developing a proto-
typeadhocdeployablemultimodallocalizationsystem
[GE01] that is composedof many stand-aloneacous-
tic rangingunits anda few acousticrangingunits with
cameras.In general,acousticrangingperformancesuf-
fers whenthe “line of sight” (LOS) pathis obstructed.
Acousticrangemeasurementsin obstructedconditions
oftenconsistentlydetectlongerreflectedpaths,leading
to unboundedrangeerror. Becausethey measurethe
longpathconsistently, it canbeverydifficult to identify
theseerrorsbasedexclusively on analysisof acoustic
data.

However, supposeeachcamera’s field of view con-
tainsseveralrangingunits,whichmightbeidentifiedby
acharacteristicpatternstrobedonanIR LED. Any rang-
ing unit thatthecameracanseehasahighprobabilityof
LOS to thecamera,andthusin thosecases,anaccurate
rangecanbe determinedwith acoustics.Additionally,
usingangulardisplacement,a cameracanestimatethe
rangebetweenany two rangingunitsin its field of view.
By usingtherelatively coarseangularinformationfrom
thecamera,rangingunitswould beableto identify and
ignorelargeerrorsresultingfrom obstructedconditions.
Additionally, in a morecomplex scenario,two cameras
mightcoordinateto formulatea3D modelof theterrain
andthusdeterminethelocationof obstructingfeatures,
applyingthetechniquesof Kanade[KON92].
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3.3 Adapting to a Fixed Envir onment

Toleranceof randomplacementor high node mobil-
ity arenot the only reasonsto designsensornetworks
to be self-configuring. Even in caseswhere they are
placeduniformly and do not move, nodesmust inde-
pendentlyself-organizeto coordinatefor collaborative
sensingfunctions.

The environmentsin which thesesystemsare ex-
pectedto operatewill be time-varying due to RF va-
gariesandother environmentaldynamics. In addition
to time-varyingcomponents,many characteristicsof the
environmentwill be a function of fixedelements,such
astreesor hills on a terrain. Althoughtime-varyingef-
fectscanbeanalysedstatistically, errorsanddistortions
resultingfrom fixedelementsmustbe compensatedby
detectingandadaptingto theseconditions.An approach
aimedat characterizingtheenvironmenthasthe poten-
tial to improve sensingfidelity as well as energy ef-
ficiency. For example, in the multimodal localization
system[GE01] previouslydescribed,nodescouldretain
long-terminformationaboutnon line of sightpairsde-
tectedwhenobstructionschangeslowly.

3.3.1 Adapting to SystemCharacteristics

It is difficult to designlocalizedalgorithmsthat both
empirically adaptto a wide rangeof environmentsand
converge to a desiredglobal behavior over that entire
range.Someinformationaboutthe systemcansignifi-
cantlyhelptheconvergenceof localizedalgorithms.Ex-
ternal systeminformation may be provided in several
ways. Someexamplesare: (i) Insteadof treatingall
nodesuniformly, performedgedetectionto distinguish
boundarynodes.(ii) Useinformationaboutpartitionsor
othernodes.(iii) Uselong rangeradiosor tieredarchi-
tecturesto balanceenergy efficiency with convergence.

We will illustrate the first examplewith the context
of self-configuringbeaconplacement.Our simulations
show thatto improvethesystemlifetime with STROBE,
it is importantto distinguishboundarybeacons(through
edgedetection)from otherbeacons.Considerthe fol-
lowing example. All beaconsform a linearchainof ;
hops. Eachbeaconhasa nominal transmissionrange� andtheir regionsof coverageoverlap. Supposeonly� in every < beaconsneedsto be active to achieve our
thresholdlocalizationquality. Let = bethetotal energy
of eachbeaconand >=@? betherateof energy dissipation
whena beaconis active. To keepthingssimple,we as-
sumetherateof energy dissipationwhena beaconis in
theSLEEPstate >=@A is negligible.

Case1: Treatingnodesuniformly.
Boundarybeaconsestimatea lower neighborhood
sizeandarealwaysactive. In that case,expected
lifetime of a boundarybeaconB,BDC � = >= ? % (6)

After time
B)C

the boundarybeaconwill die. In
thisperiod,otherbeaconswereactiveonly half the
time.

Expectedlifetime of a beaconthat is E hopsfrom
theboundarycanbederivedas,B)F � <G� BDC � � �IH � ��
J< � F 	5K � % (7)

In this case, beaconsdie successively at timesB)C"L � %NM B)COL �
�P� LRQ < BDC . Thesecascadingfailures
leadto anon-uniformbehavior acrossthenetwork.

Case2: Edgedetection.
If a boundarybeaconcandetectit is at thebound-
ary, it canadjustits dutycycleto beactiveonly half
thetime. Lifetime of boundarybeaconsSB C � <G� = >=@? (8)� <G� B C (9)

Lifetime of a beacon( E hopsfrom theboundary)SBDT � <G� B C % (10)

Case1 leadsto a cascadingfailure that doesnot occur
in Case2. Thusweachieveuniformbehavior acrossthe
systemby distinguishingboundarynodes,andimprove
systemlifetime.

3.3.2 Adapting to the Wir elessChannel

Savvideset al. [SHS01] proposeanapproachby which
nodesin awirelessnetwork canimprovetheaccuracy of
their RSSIbasedlocationestimates(discussedin Sec-
tion 2) by dynamicallyderiving (learning)thesurround-
ing wirelesschannelproperties. The algorithm starts
with an initial guessof channelproperties2 andtries to
obtain nodeposition estimatesthrougha sequenceof
successivemultilateration.Theinitial setof positiones-
timatescannow beusedto obtainan initial estimateof
thechannelpropertiesby providing two crucialcompo-
nents:(i) A largesetof inputsfor theestimationof the
channelparameters.(ii) A correspondingerrorvariance
that is usedas a weight for eachinput in the channel
modelestimator.

Using theseinputs,the channelmodelestimatorcan
producea new estimateof thechannelpropertieswhich
canbeusedin subsequentmultilaterations.Theprocess
is repeateduntil the valuesof the channelmodel,and
consequentlypositionestimatesconvergeto a specified
tolerance.

This makes it a versatilesolution that even without
prior calibration can work in many different settings
wherethe propagationchannelpropertiesaredifferent.
Furthermore,if the sensorsare deployed over a wide
area, the signal propagationcharacteristicsmay vary

2For instance,parameterssuchas the additive Gaussianchannel
noisein thelog-normalshadowing model[Rap96].
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widely even acrossthe region of interest. Calculating
the propagationcharacteristicslocally yields betterac-
curacy in thenodelocationestimates.

4 Conclusions

Localizationis a key building block for sensornetwork
applicationsandis asensornetwork in andof itself. We
exemplifiedthreedesignthemesthat will be important
in wirelesssensornetworksgenerally- density, multiple
sensormodalitiesfor robustmeasurementsandadapting
to fixedenvironmentalfeatures.
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