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Dueto the sheemumbersof nodesinvolved andthe
particular needsof applications(eg. emegengy ser
Penasive networksof micro-sensorandactuatoroffer vices), thesesystemsmust be ad hoc deployable In
to revolutionize the waysin which we understandand extremecasesnodesmay be droppedfrom an aircraft
constructcomplex physicalsystems. Sensometworks in a remoteterrain; however, evenassumingndividual
must be scalable Jong-lived and robust systemsover  placementthe scaleof the systemandvariationsin the
coming enegy limitations and a lack of pre-installed ervironmentrequirethatthey self-configureand adapt
infrastructure. We explore threethemesin the design to their environmentwithout userintervention.Because
of self-configuringsensometworks: tuning densityto wiring is often impractical,nodesmustbe untetheed
trade operationalquality againstlifetime; usingmulti- Thisrequiremenstemsrom mary factorsjncludingre-
ple sensormodalitiesto obtain robust measurements; motenesgwildlife monitoring), mobility, andthe need
andexploiting fixed ervironmentalcharacteristics We for ad hoc deployment. Oncedeployed, thesesystems
illustratethesethemesthroughthe problemof localiza- must operatedespitebeing largely unattended since
tion, which is a key building block for sensorsystems nodesmay be inaccessiblewhetherdue to their tight

Abstract

thatitself requirescoordination.
Keywords - low-power wireless,sensometworks, lo-
calization,self-configurationlocalizedalgorithms.

physicalcoupling(largeindustrialplants aircraftinteri-
ors)or inhospitableerrain(toxic or urbanlocations).

The above requirementsmposesubstantiaphysical

constraintsat both the nodeand systemlevels. Nodes
mustbe small for unobtrusve monitoring. Sincethey

are untetheredtheir enegy sourcesmustbe on-board,
andis often relatively small. The systemas a whole

Recenttechnologicandvanceshave fosteredthe emer  Musttoleratead hoc deplymentandunattendedper
genceof small, low-power devices that integrate mi- ation without mfrastructgresupport. Glyen suchcon-
crosensing@ndactuationwith on-boardprocessingand Straints,the network designersgoalsshift towardsex-
wirelesscommunicationsapabilities. Whendeplojed  t€nding systemlifetime and robustnessin the face of
in large numbersand embeddeddeeply within large- UNPredictabledynamics,ratherthan focusingon opti-
scale physical systems thesedevices gain the ability Mizing channethroughputor minimizing nodedeploy-
to measureaspectf the physicalervironmentin un- Ment.
precedentedletail. Throughdistributed coordination,  Although in most systemscentralizedsolutionsare
penasie networks of micro-sensorgsindactuatorswill — preferredfor simplicity, several constraintsof wireless
revolutionizethewaysin whichwe understané@ndcon- sensometworks make centralizationexpensve and of-
structcomplex physicalsystems.[EGHK9P teninfeasible.Nodeenengy limitations placenumerous
Thereare mary potentialapplicationsof sensomet- constraintson communicatior{PK0Q]. In addition,ra-
works: physiologicalmonitoring; ervironmentalmon- dios usedin sensometworks areoften quite low band-
itoring (air, watet soil, chemistry); condition based Width (10-20Kb/s). Finally, systemdynamics(node
maintenancesmartspacesmilitary surwillance;preci- movementor failure andchangesn radio propagation)
sionagriculture;transportationfactoryinstrumentation With large numbersof nodesmake a global picture ex-
andinventorytracking. This papewill addressequire- Pensveto getandimpossibleto maintain.
mentsanddesignthemesfor thesedenselydistributed,  Localizationis an importantbuilding block for sen-
physicallycoupledandwirelesssensometworks. sor networks andis itself a sensometwork. We useit
pr— - by DARPA und \DABTES asour exampleto motivatethe needfor automaticself-
o e SBpOTEY DA U eHOASTEX.  configumton though adapive loalized algorhs

aspartof the SCONR project,andwasalsomadepossiblein partdue A I_Ocalized algorithm is a diStrimted CompUtatio_nin
to supportirom Ciscosystems. which sensornodesachieze a desired global objec-
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Figure 1: Localization- an example sensornetwork.
Beaconsself-oganizeinto a coordinatesystemusing
pairwisedistanceestimatesobtainedby acousticrang-
ing. Othernodesmay determinepositionto bethe cen-
troid of proximateradiobeacons.

tive while constrainingtheir communicatiorto sensors
within someneighborhoodEGHK99].

In this paper we explore coordinationin wireless
sensomnetworksbasedon adaptve localizedalgorithms
that exploit both the local processingavailable at each
node as well as the redundang available in densely
distributed sensometworks. We introducethe design
themesof density multiple sensomodalitiesandadap-
tationto fixed ervironments andshov how they canbe
appliedto build self-configuringocalizationsystems.

2 Nodelocalization

Unlike the Internet,wirelesssensometworks are orga-
nizedaroundthe namingof data,notnodeg§EGHK99].
Nodesare neitheruniquenor reliable; applicationsex-
pressaneedfor aparticulardataelemenbr typeof data
by namingit directly. By eliminatingindirection e.g.
the mappingfrom a nameto a nodeaddresgo aroute,
a sensometwork can eliminatethe maintenancever-
headassociatedvith constructingandmaintainingthese
mappingsanddirectoryservices.
Becausesensordataareintrinsically associatedvith
the physical context of the phenomenaeing sensed,
spatialcoordinatesareoftenanaturalwayto namedata.
Spatialcoordinatesare alsoemployed by collaboratve
signal processingalgorithms(e.g. beamforming)that
combinedatafrom multiple sensomodesfor suchtasks

will needto determinetheir relative positionsand self-
organizeinto aspatialcoordinatesystemwithoutrelying
onremoteinfrastructuresuchasGPS.

Sucha localizationsystemis in itself an exampleof
a wirelesssensornetwork, asit involves a collection
of networked nodescollaboratingto achieve a higher
level task: a coordinatesystembasedon sensorymea-
surementf the physicalervironment(suchassignal
strength, signal propagationcharacteristicspr packet
deliveryrates).

A sensometwork may be organizedas a tiered ar
chitectureof nodes,perhapswith a mix of small PC-
classnodes(32-bit CPUs, 107 bytesRAM/Flash) and
smaller nodessuch as UCB Motes [HSW*0Q] (8-bit
CPUs, 10% bytesRAM, 10° bytesFlash). By mixing
nodesizesyvery small-form-factornodescanbedensely
deployed and physically co-locatedwith targets,while
larger but more capablenodesare still available when
neededCEE*T01]. Becauséndividualnodecapabilities
arequite varied,we requirea federationof localization
approachegseeFigurel).

Multilateration algorithms: In one approachsen-
sornodesmeasure sufficient numberof pairwisedis-
tanceestimatesandthenusemultilaterationalgorithms
for positionestimation.Onepromisingrangingtechnol-
ogy usesa combinationof radio and acousticsignals,
usingthemuchfasteradiosignalto establisttimerefer
enceandthetime of flight of acousticsignalsto estimate
distance[GirOD Sensornodeswith thesecapabilities
canindependentlyorm arelative coordinatesystem.

Proximity-based.ocalization: Suchnodescanactas
beacondor smallerdevicessuchasthe UCB motesthat
may not have the hardwarecapabilityfor acousticrang-
ing. A beacorwould periodicallybroadcasits position.
By listeningto broadcastérom a collection of nearby
beaconsandinferring proximity to thosebeaconswith
low messagéoss,eachnodecould estimateits position
to bethe centroidof its proximatebeacongBHEOQQ].

Iterative Multilateration: If the densityof beacons
is not sufiicient in someareasof the sensornetwork,
the proximity-basedocalizationcanbe augmentedy
the morecostlyandperhapdesspreciseapproactof it-
erative multilateration,in which beaconinformationis
propagatedhroughmultiple hopsto enabldocationes-

astamettracking. Furthermore geographicassistance timationin areaof low beacordensity[SHSOL

in ad hocrouting promisessignificantreductionsn en-
ergy consumptiofKK00, XHEO1].

The problem of estimating spatial coordinatesis
known aslocalization,andhasgeneratednuchinterest
in recentyears|BP00O, BHEOO, DPGO1, Gir00, WJH97,
NBOO, PCB00,SHS0]. When sensornodesare de-
ployed in an unplannedtopology, thereis no a priori
knowledgeof location. Device constraintsuchascost,
form factor (including antennasize) and power con-
sumptionmay precludethe use of GPSon all nodes.
Moreover GPSdoesnot work indoors,underwater, or
in the presencef overheadobstructionssuchasdense
foliage. Thus,in mary scenariossensometwork nodes

All theaboreapproachearesensitveto ervironmen-
tal vagaries. The problemsthat ariseinclude (i) incor-
rectrangemeasurementueto nonline-of-sightcondi-
tionsfor acousticanging,(ii) errorin RSSI-basedang-
ing causedby variationsin channelparameterscross
differentervironments(1/r™ models),(iii) poor corre-
lation betweenRSSI and distanceowing to multipath
interferenceandfading,and(iv) insufficient numberof
reachablébeaconor interferenceamongstdenselyde-
ployed beacongfor proximity-basedlocalization. We
arguebelow that suchproblemscall for the useof self-
configuringlocalizedalgorithms.

Since almostall ranging techniquesrely on signal



propagationcharacteristicsthey are susceptiblego ex-

ternalfactorssuchasinterferencemultipatheffectsand
changesn temperaturandhumidity. Thesignalpropa-
gationcharacteristicef bothradioandacousticsignals
may changewith variationsin the surroundingenviron-

ment. Thesephysicaleffectsaredifficult to predictand
canleadto incorrectrangemeasurementshich would
greatly affect the quality of localizationin our multi-

lateration anditerative multilateration approacheslis-
cussedbove.

Beaconplacementand density can significantly af-
fect the quality of localizationin our proximity-based
localization approach[BHEOla We cannotrely on a
uniform placementof beaconsas propagationcharac-
teristicsof low power radiocommunicationgansignif-
icantly affect the visibility of beaconsven whenuni-
formly placed.An intuitive way to solve this problemis
to deploy alargenumberof beaconsThe problemwith
this approachs thatwe cannothave all deployed bea-
consturnedon simultaneouslbecausef the possibil-
ity of interferenceamongseveralbeaconsrying for the
communicatiorchannebhswell asexcessve enegy use.
In simple and small structuredernvironments(indoors,
factoryautomatiorplantsetc.),we couldperhapsnodel
andcarefully placeexactly theright numberof beacons.
However, this approachis not usefulwhenwe deploy
large systemsn dynamic,unpredictableernvironments.

Two characteristicsare clearly desirablein practi-
cal solutionsto the problemsdescribedabove. First,
the overall systemmustdynamicallyandautonomously
adapt(self-configue) andreconfigureto the particulars
of its ervironmentalsetting. Seconddueto scalability
andenegy-efficiengy considerationsandbecausenvi-
ronmentalcharacteristicean vary widely even within
a single region of interest, self-configurationmust be
achieved by individual beaconsusing localized algo-
rithms

3 DesignThemes

Becausesensingand actuationdefinea physicalscope
to a nodes influence, localized algorithms provide a
naturaldesignparadigmfor physically distributedsen-
sor networks. More importantly localizedalgorithms
are attractve becauseof their scalability and robust-
ness.Localizedalgorithmsscalewell with network size
sincescalingis influencedby densityratherthanphys-
ical extent, thereforealgorithm compleity grows with

the degreeandnot total size of the graphs. Sincethey

areself-configuringthey canalsobeself+e-configuring
andthus can be robustto network partitionsand node
failures.

In this section, we elaborateupon a few design
themesthat arise in the application of adaptve lo-
calized algorithmsfor scalablecoordinationand self-
configurationin wirelesssensomnetworks.

3.1 Density

Density is an important parameterin physically dis-
tributedsystemshpoth densityof the solutionspaceand
of nodes.We formalizethesenotionsbelow.

3.1.1 Solution SpaceDensity

Localizedalgorithmsare mosteffective whenthe prob-
lem solutionspacds densethatis, agivenproblemhas
a large numberof satisfyingsolutions. Sincelocalized
algorithmswork with limited localinformation,we can-
notusethemto solve problemswhereinwe needto de-
terminea global optimal solution. Becauseve do not
have accurate general,modelsof the physicalworld,
measuremenis neededandis well suitedto localized
algorithms. An exampleis our self-configuringbeacon
placemenglgorithmswhereinbeacondocally measure
theirneighborsandmessagéssto determingheirroles
(beactive or passve).

3.1.2 Network Density

Localizedalgorithmsare more effective whenthe net-
work itselfis dense We canexpresghenetwork density
u(R) in termsof numberof nodespernominalcoverage
area.Thus,if N nodesarescatteredn aregion of area
A, andthenominalrangeof eachnodeis R,

N -7 - R?
" .

Note thattherangeR canbe eitherthe rangeof a par
ticular sensoior theradiotransmissiorrange(idealized
with circular propagation).In eachcase the associated
network densitywill bedifferent.

Variousphenomenaatuiate at a certaincritical net-
work density particularto them. Beyond this critical
nodedensity additionalnodesdo not necessarilypro-
vide additionalsensing,communicatioror coveragefi-
delity andareessentiallyinterchangeabldror instance,
Kleinrock andSilvestershav thatin awirelessnetwork
with a uniform distribution of nodes,when u(R) is 6
nodes the probability thata nodeis connectedeaches
1 [KS78] regardlesf actualnodeplacement.

For problemswheresucha critical saturatiordensity
exists,thesolutionspacalensityS canberelatedto net-
work density Let A be the critical densityrequiredto
accomplistacertaintask.ls u(R) > A, only asubsebf
A nodesin ary local neighborhoodf size u(R) needs
to participatein thetask.

Thesizeof thesolutionspaceS, is thenumberof dis-
tinct subsetof nodesthatcouldbe active in ary neigh-

borhood.

In otherwords, for agiven A, S o« pu(R)*, andgrows
rapidly with u(R).

(k) 1)

w(R)

S A

(@)



3.1.3 Controlling Density by Changing Radio
Power

How canwe control network density? In mary next
generatiorsensomodeswe canrealisticallyexpectthe
radio transmit power level of a nodeto be software-
controllable[HSW*00]. Assumingthe recever and
transmittergainsremainthe same,the nominal trans-
missionrangeof aradio R is typically a function of its
transmitpower level P,. For instance accordingto the
Friis FreeSpaceradio propagatiormodel[Rap94, the
recevedpower at distanced,

Pd) x 2 @
If thethresholdpower for receptionis P, then

P.(R) = Py (4)
Thus

R x P2 (5)

However, at very shortrangesradio shadaving effects
can attenuatespecific frequencies,so the use of fre-
gueny hoppingtechniqueds important. The correla-
tion of rangewith transmitpower in mary casesmay
be nonideal, nonradial, even non monotonicand con-
cave. However, multiple power levels canstill be used
asa coarseadjustmentf network density For instance,
if R? « P;, thendoublingthetransmitpower level can
achieve twice the network densityin Eqgn. 1.

Additionally, multiple power levelscanbeusedto get
moreinformationaboutthe system.For instancemulti-
hop communicatiorbreaksdown at network partitions
asthereare no nodesen route By transmittingat a
higherpower, informationaboutsuchpartitionscanbe
communicated. Finally, multiple power levels can be
usedto constructa tieredarchitecturehattakesadwan-
tageof heterogeneousapabilitiesandreach[CEE 01].

Assumingbeaconsare distributed uniformly at ran-
dom, proximity-basedocalization|BHEOQ saturatest
a certainbeacondensity[BHEO1& Whenthereare re-
dundantbeaconsthe systemwill be expendingunnec-
essaryenegy and beaconsmay interferewith one an-
other by congestingthe communicationchannel. Our
challengas to find theright balanceof beaconghatpro-
vide basicbeaconcoverageandare conducve to good
localizationquality. Basedon our principlesof solution
spaceand nodedensity we know localizedalgorithms
maybeappliedhere.

Our solution is termed STROBE, for Selectvely
TuRning Off BEacons[BHEO1p Our basicapproach
is to extend systemlifetime by exploiting the redun-
dang provided by densesensornetworks. Beacons
in STROBE canbe in either one of two active states
(LISTEN-BEACON,BEACON-ONLY)* orin apassve

1Two active statesareneededecausdisteningincursenegy cost.

state (SLEEP) and transition betweenthesestatesde-

pendingon the numberof their active neighborbea-

cons. While maintainingthe desiredthresholdlocal-

izationgranularityacrossheterrain,STROBE bothre-

ducesgheself-interferencemongsseveraltransmitting
beaconsandimproves systemlifetime by probabilisti-

cally turning off redundanbeaconsBy tuningit based
on systemand node enegy consumptionparameters,
STROBE canbe madeeneny efficient.

3.2 Multiple SensorModalities

Any individual modeof sensingcanbe blockedor con-
fusedby the ervironment. Leveragingmultiple sensor
modalitiesis oneway to achiese robustnesslespiteun-
predictableervironmentalcharacteristic§GEO1]. For
every sensorysystem thereexists a setof ervironmen-
tal conditionsthatwill confuseit, anda subsebf those
in which it fails to identify thatit is confused. How-
ever, differentsensorymodalitiesare often orthogonal
to eachother, in the sensethattheir setsof failure con-
ditionsarelargely disjoint. We contendthatwe canim-
prove thequality of our sensoiobsenationsthroughco-
ordinationand communicationwith significantly less
effort relative to the effort requiredto incrementallyim-
prove the sensorn their own, simply by usingthese
“orthogonal” modalitiesto identify eachothers’failure
modesandrejectbaddata.

Basedon theseideas, we are developing a proto-
type ad hoc deployablemultimodallocalizationsystem
[GEO] thatis composedof mary stand-aloneacous-
tic rangingunits anda few acousticrangingunits with
camerasln generalacousticrangingperformancesuf-
ferswhenthe “line of sight” (LOS) pathis obstructed.
Acousticrangemeasurements obstructedconditions
often consistentlydetectiongerreflectedpaths,leading
to unboundedrangeerror. Becausethey measurethe
long pathconsistentlyit canbevery difficult to identify
theseerrors basedexclusively on analysisof acoustic
data.

However, supposesachcameras field of view con-
tainsseveralrangingunits,which mightbeidentifiedby
acharacteristipatternstrobedonanIR LED. Any rang-
ing unitthatthecameracanseehasa high probability of
LOSto thecameraandthusin thosecasesanaccurate
rangecan be determinedwith acoustics.Additionally,
usingangulardisplacementa cameracan estimatethe
rangebetweerary two rangingunitsin its field of view.
By usingtherelatively coarseangularinformationfrom
the camerayangingunitswould be ableto identify and
ignorelargeerrorsresultingfrom obstructedconditions.
Additionally, in a morecomplex scenariofwo cameras
might coordinateto formulatea 3D modelof theterrain
andthusdetermineghelocationof obstructingfeatures,
applyingthetechnique®f Kanade[KON92.



3.3 Adapting to a Fixed Environment

Toleranceof random placementor high node mobil-
ity arenot the only reasongo designsensometworks
to be self-configuring. Even in caseswherethey are
placeduniformly and do not move, nodesmustinde-
pendentlyself-oganizeto coordinatefor collaborative
sensingunctions.

The ervironmentsin which these systemsare ex-
pectedto operatewill be time-varying dueto RF va-
gariesand other ervironmentaldynamics. In addition
to time-varyingcomponentsmnary characteristicsf the
ervironmentwill be a function of fixed elementssuch
astreesor hills on aterrain. Althoughtime-varying ef-
fectscanbe analysedstatistically errorsanddistortions
resultingfrom fixed elementamustbe compensatety
detectingandadaptingo theseconditions.An approach
aimedat characterizinghe ervironmenthasthe poten-
tial to improve sensingfidelity as well as enegy ef-
ficieng. For example,in the multimodal localization
system{GEOQ]] previously describednodescouldretain
long-terminformationaboutnonline of sight pairsde-
tectedwhenobstructionshangeslowly.

3.3.1 Adapting to SystemCharacteristics

It is difficult to designlocalized algorithmsthat both
empirically adaptto a wide rangeof ervironmentsand
converge to a desiredglobal behaior over that entire
range. Someinformationaboutthe systemcansignifi-
cantlyhelpthecorvergenceof localizedalgorithms.Ex-
ternal systeminformation may be provided in several
ways. Someexamplesare: (i) Insteadof treatingall
nodesuniformly, performedgedetectionto distinguish
boundarynodes (ii) Useinformationaboutpartitionsor
othernodes.(iii) Uselong rangeradiosor tieredarchi-
tecturego balancesnegy efficiengy with corvergence.

We will illustrate the first examplewith the context
of self-configuringbeaconplacement.Our simulations
shaw thatto improvethesystemlifetime with STROBE,
it is importantto distinguishboundanbeacongthrough
edgedetection)from otherbeacons.Considerthe fol-
lowing example. All beacondorm alinear chainof D
hops. Eachbeaconhasa nominal transmissiorrange
R andtheir regionsof coverageoverlap. Supposenly
1 in every 2 beaconseedsto be active to achieve our
thresholdocalizationquality. Let ¢ bethetotal enegy
of eachbeacorand¢, betherateof enepgy dissipation
whena beacoris active. To keepthingssimple,we as-
sumetherateof enegy dissipatiorwhenabeacoris in
the SLEEPSstateg;, is negligible.

Casel: Treating nodesuniformly.
Boundarybeaconsestimatea lower neighborhood
sizeandarealwaysactie. In that case,expected
lifetime of aboundarybeacorB,

Ls f (6)

After time L; the boundarybeaconwill die. In
this period,otherbeaconsvereactive only half the
time.

Expectedifetime of a beaconthatis k£ hopsfrom
theboundarycanbederivedas,

L, = (7)

= 2-Ly-(1—(1/2)F1).
In this case, beaconsdie successiely at times
Ly,1.5L,---,~ 2L,. Thesecascadingfailures
leadto anon-uniformbehaior acrosghenetwork.

Case2: Edgedetection.
If aboundarybeaconcandetectit is atthe bound-
ary, it canadjustits duty cycleto beactive only half
thetime. Lifetime of boundarybeacons

£y, = 25 ®)
= 2.1 9)

Lifetime of abeaconk hopsfrom theboundary)

L. = 2-L. (10)
Casel leadsto a cascadindailure that doesnot occur
in Case2. Thuswe achieve uniform behaior acrosshe
systemby distinguishingboundarynodes.andimprove

systemlifetime.

3.3.2 Adapting to the Wir elessChannel

Savidesetal. [SHS0] proposeanapproactby which
nodesn awirelessnetwork canimprovetheaccurag of
their RSSlbasedocationestimateqdiscussedn Sec-
tion 2) by dynamicallyderiving (learning)the surround-
ing wirelesschannelproperties. The algorithm starts
with aninitial guessof channelpropertie$ andtriesto
obtain node position estimateshrough a sequenceof
successie multilateration.Theinitial setof positiones-
timatescannow be usedto obtainaninitial estimateof
thechannelpropertiesy providing two crucialcompo-
nents: (i) A large setof inputsfor the estimationof the
channeparameters(ii) A correspondingrrorvariance
thatis usedas a weight for eachinput in the channel
modelestimator

Using theseinputs, the channelmodelestimatorcan
producea new estimateof the channelpropertieswvhich
canbeusedin subsequermnultilaterations.The process
is repeateduntil the valuesof the channelmodel, and
consequentlyositionestimatesornvergeto a specified
tolerance.

This makesit a versatilesolution that even without
prior calibration can work in mary different settings
wherethe propagatiorchannelpropertiesare different.
Furthermore,if the sensorsare deployed over a wide
area, the signal propagationcharacteristicanay vary

2For instance parametersuchas the additve Gaussiarchannel
noisein thelog-normalshadaing model[Rap9%



widely even acrossthe region of interest. Calculating
the propagatiorcharacteristicsocally yields betterac-
curag/ in thenodelocationestimates.

4 Conclusions

Localizationis a key building block for sensometwork
applicationsandis a sensomnetwork in andof itself. We
exemplifiedthreedesignthemesthatwill be important
in wirelesssensomnetworksgenerally- density multiple
sensomodalitiesfor robustmeasuremen@ndadapting
to fixedervironmentalfeatures.
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