
Low-Rate, Flow-Level Periodicity Detection

Genevieve Bartlett1 John Heidemann1 Christos Papapdopoulos2

1
USC/Information Sciences Institute; Marina del Rey, CA

2
Colorado State University; Ft. Collins, CO

Abstract—As desktops and servers become more complicated,
they employ an increasing amount of automatic, non-user ini-
tiated communication. Such communication can be good (OS
updates, RSS feed readers, and mail polling), bad (keyloggers,
spyware, and botnet command-and-control), or ugly (adware
or unauthorized peer-to-peer applications). Communication in
these applications is often regular, but with very long periods,
ranging from minutes to hours. This infrequent communication
and the complexity of today’s systems makes these applications
difficult for users to detect and diagnose. In this paper we
present a new approach to identify low-rate periodic network
traffic and changes in such regular communication. We employ
signal-processing techniques, using discrete wavelets implemented
as a fully decomposed, iterated filter bank. This approach not
only detects low-rate periodicities, but also identifies approximate
times when traffic changed. We implement a self-surveillance
application that externally identifies changes to a user’s machine,
such as interruption of periodic software updates, or an instal-
lation of a keylogger.

I. INTRODUCTION

As computer systems become more complicated, their main-

tenance and inter-machine coordination has become increas-

ingly automated.As a result of this automation, communication

is no longer strictly driven by user actions. Instead, computer-

initiated communication is now common. Such automatic

network communication means that users are increasingly

unaware of when and with whom their machine communicates,

and what information is being shared. Positive examples of

this automatic communication include automatic updates to

operating systems and applications, and automated tracking of

information for later consumption, such as RSS feeds, email

checks and auction bots. Finally, long-running applications

such as peer-to-peer file sharing coordinate periodically to

share data and maintain an overlay network.

While much of this communication is beneficial to users, not

all automatic communication is desirable. Some applications

may share more information than a user may like, such as

assistants that report the user’s click-stream to advertisers or

keyloggers that share a user’s passwords. Other applications

inject ads into user browsing, periodically checking a control

site for new ad content and updates. Finally, compromised

computers poll increasingly sophisticated control networks, of-

ten using decentralized, peer-to-peer schemes to form botnets

of hundreds of thousands of computers.

Hidden communication is often periodic at timescales of

minutes to hours. Application and OS update checks of-

ten happen at regular intervals, usually hourly or weekly.

Some applications regularly poll for new information, such as

This work is partially supported by the United States Department of
Homeland Security contract number NBCHC080035. Conclusions here are
those of the authors and do not necessarily reflect the views of DHS.

weather, stock, or news updates. For example, cnn.com’s web

page automatically reloads every 30 minutes. For one-time

communications, such as reports of a new operating system or

application installation, personal firewalls such as ZoneAlarm

often alert users to some of this non-user-driven communica-

tion. For behind-the-scenes periodic communication however,

a personal firewall does not typically alert a user every time

the communication occurs, and such alerts would be quickly

ignored if they could not be correlated with an activity.

These challenges point to a need for a self-surveillance

tool that will warn users when suspicious network activity is

detected from their machines. Such an application could run

on the user’s machine, or on a network monitoring appliance

to be insulated from compromise of end user machines. Net-

work administrators could apply our techniques to aggregate

network traffic to find unexpected periodic traffic. While a full

evaluation of these and other applications is outside the scope

of this paper, here we identify the problem and show our first

steps towards a system for detection of these phenomena.

In this initial look at low-rate periodic communication, our

contribution is three-fold. First, we identify low-rate flow

periodicity as a phenomena of interest in network traffic.

Second, we present a novel method to identify low-rate

periodic communications in aggregate traffic (Section III).

We use full wavelet expansion to identify periodicities from

several minutes to hours. Although wavelets are widely used

for compression [17], and sometimes traffic analysis [1], [5],

[10], we are the first to apply full expansion to identify low-

rate periodic traffic. Last, we present a self-surveillance appli-

cation which can detect the addition or removal of periodic

communication (Section IV).

II. RELATED WORK

Our work builds on identifying and classifying applications

via network traffic using behaviors unique to specific applica-

tions, such as patterns of communication with other computers.

Examples of such schemes include work by Karagiannis et

al. [11], [12], Constantinou and Mavrommatis [4], and Bartlett

et al. [2] where behaviors such as port usage, protocol usage,

and number of connections made aid in classifying traffic. Our

work also looks at network behavior to identify applications;

however, we look at the previously unexplored behavior of

low-rate periodic communication.

We are also related to detection tools which identify traffic

anomalies. These systems characterize normal traffic and then

watch for unexpected divergence using traffic entropy [7], [15]

or through signal-processing techniques [1]. Unlike this prior

work, we focus on low-rate periodicity generated by appli-

cations and changes in such behavior, and not characteristics

2

of aggregate network traffic and anomalies which dominate

aggregate traffic at some time scale.

Giroire et al. detect botnet command-and-control communi-

cation by finding persistent communication between the end-

host and other destinations [6]. Both their work and ours focus

on repeated communication, but we use signal processing to

automatically detect periodic, persisent communication. Their

work also requires fine-grain tracking, with rules to aggregate

destinations into groups, with indivudally tracked end-hosts.

We instead use signal processing to extract periodic traffic

from aggregate traffic. Their success at detecting botnets from

regular communication lends credence to our claim that iden-

tifying periodic communication can reveal malicious traffic.

Host-based malware detection is another class of

application-detection schemes related to our work. Virus

and spyware scanners run on a host and use signatures

specific to each malware program to either identify unwanted

files. Part of our work looks at detecting new installations of

programs such as keyloggers and adware, but unlike typical

malware detection, we are the first to look at general network

behavior to identify some of these applications.

We apply spectral techniques to network traffic. Spec-

tral techniques have been employed to identify bottleneck

links [8], [9] and routing information [16] as well as a

range of network anomalies [1], [13]. Magnaghi et al. detect

anomalies within TCP flows using a wavelet-based approach

to identify network misconfigurations [13]. Barford et al. also

use wavelets to analyze SNMP and flow-level information to

identify events which dominate the network at some time scale

such as DoS floods, flash crowds, and routing failures [1].

We differ from previous work in three main ways. First,

our focus is different from prior work. Our work looks at

periodicity between flows—not within a flow—to identify

hosts which maintain regular contact. Second, most prior work

searches for specific frequency bands; we instead explore a

very large number of narrow frequency ranges and achieve

this with full decomposition using iterated filtering. Finally,

most prior work looks at high frequency behavior; we instead

consider events which occur at very low frequencies (sub-

1Hz) and use long observation windows (hours to days) to

see such events. Our work is a specific example of applying

signal processing to network traffic [14].

III. METHODOLOGY

We use wavelets implemented as an iterated filter bank to

identify periods of time when a periodic series of connections

is present. In this section we discuss how we go from network

events to identifying a change in periodic communication.

Although wavelets provide a well developed mathematical

theory, and there has been some work applying wavelets to

network traffic before, discovering infrequent periodic traffic

is particularly demanding because of the long-timescales and

sparse signals involved. Here we describe the four main parts

of our approach extracting a timeseries of events from network

traffic, decomposing the timeseries using an iterated filter

bank, visualizing the resulting multi-resolution representation,

and detecting the presence of a periodic signal. Our focus on

long-timescales influences each of these steps.

A. Timeseries Extraction

To apply signal processing to network traffic we first must

generate a timeseries of events that represent network traf-

fic [14]. We begin by discarding all traffic that is not of interest,

then map events of interest into a fixed-interval timeseries of

events per time period.

Our first step is to subset traffic. This step is important

because the signal-to-noise ratio governs our ability to detect

behavior of interest, and any irrelevant traffic that can be dis-

carded decreases background noise and improves sensitivity.

In most cases we consider all TCP traffic. However, in certain

applications we can improve our detection by discarding traffic

based on other characteristics. For example, when looking for

malware known to hide in web traffic, we can discard all traffic

other than TCP connections to port 80.

Next, we define an event of interest. We are interested in

long-duration interactions, so we monitor TCP flows rather

than individual packets. The arrival of a SYN-ACK packet in

the input packet stream defines the time of an event denoting

a new TCP flow. (We use SYN-ACK since it indicates a com-

plete three-way handshake with two active parties.) Malicious

traffic with forged SYN-ACK packets may taint this data, but

is unlikely to show long-term periodicity and so does not alter

our results.

After extracting and sampling events, we create a timeseries

covering the duration of analysis. We use fixed-duration bins,

and count the number of new connection events per bin, re-

sulting in a time series X of length n, where n = duration
timebinsize

.

Since our target events are infrequent (minutes or hours

apart), we study durations of at least 12 hours to observe

multiple instances of an event. We use a bin size of 1s, chosen

to support a large range of periods (from several seconds to

several hours). We must pick a sampling rate high enough to

keep precision for high frequency events, but low enough to

avoid excess filtering. Binning events into 1s bins acts as a

low-pass filter, and reduces the number of filtering iterations

needed to focus in on lower frequencies, while still allowing

us to look at periods as short as 2s.

B. Multi-resolution Analysis

Once we obtain a timeseries of events from network data,

we next use signal processing to identify any periodic behavior

in these events. We have chosen Haar wavelets, implemented

as an iterated filter bank of low- and high-pass filters.

For each iteration, given a timeseries X , we get two

resulting timeseries:XH—the result of the high-pass filter—

and XL—from the low-pass filter, where the length of XL and

XH is half that of the original timeseries X . We iteratively

apply the low- and high-pass filters to the resulting timeseries

and with each pass, we gain resolution in the frequency

domain, and lose resolution in the time domain.

If we consider all the combinations of low- and high-pass

filters, the full set can be viewed as a complete binary tree,

3

f
BBBBBBBB

(a) Frequency split from filters
in Figure b

HL

HL

L H

Original Data

BB

H L

BB

LH

L H

BB

H L

BB

(b) Filters resulting in Figure a

Fig. 1. Full decomposition of a filter tree, with “flip” in covered frequency
bands.

which we will refer to as a filter tree. Each node in the filter

tree covers a range of frequencies, and—with the exception of

the very left and right most nodes on each level—each node

represents a band-pass filter defined by the path of filters used

to get from the root to the node. We can—as prior work has

done—focus in on a specific frequency range by dynamically

choosing a path or using a fixed path from the root to a single

leaf in the filter tree. However, unlike prior work, we do not

have a pre-determined, specific range of target frequencies we

wish to focus in on. Instead, we want to look for all possible

low-rate periods, from a few seconds to a few hours. Therefore,

we perform a full decomposition and explore all paths through

the filter tree. Figure 1 shows a depiction of a filter tree with

full decomposition.

Unlike other signal-processing approaches, our choice of

multi-resolution analysis allows us to explore a large range of

frequencies without fine-tuning the analysis for each frequency

range. For example, a windowed Fourier transform requires

choice of window size, and choice of window size optimizes

detection of some frequencies while penalizing others. Wavelet

analysis avoids early optimization on particular frequencies,

allowing us to analyze a wide range of activity.

We select Haar as our basis function for both theoretical

and practical factors. Mathematically, the simple square shape

of the Haar wavelet is a good match for the sharp changes

that occur when new connections are represented as unit

impulses. Practically, the Haar wavelet admits a very simple

and fast implementation where all operations are differencing

or averaging. Although we do not explore hardware imple-

mentations, Haar is attractive because its simplicity makes it

a good candidate for a hardware to operate at very high line

rates. Although we find Haar a good match, exploration of

alternative wavelets is part of future work.

Full decomposition requires multiple operations on a single

timeseries and despite the use of simple operations appears

quite expensive. To reduce the total number of operations

we perform we prune certain paths through the tree, which

significantly reduces the total number of filtering operations

we perform. We discuss this pruning in Section III-E3.

C. Periodic Events and Energy

Given a multi-scale decomposition of observations, we

must determine how to identify periodic events. The wavelet

Fig. 2. Long-duration artificial period of 600s.

coefficients define the energy for a given timeseries X at some

path P in the decomposition tree:

e(XP) ≡ ss(XPL) + ss(XPH)

ss(X) ≡

n∑

i=0

x2

i

A concentration of energy in a narrow frequency range

indicates the presence of a periodic signal. We show how we

use energy to automate detection in Section III-E1.

One benefit of the Haar wavelet is that energy is conserved

at each level of decomposition, e(X) = e(XL) + e(XH). We

can therefore normalize energy and evaluate the energy of each

decomposition as a percentage of total energy.

Finally, it is possible to undershoot or overshoot a given

frequency in the filter tree. With insufficient levels of decom-

position, energy is spread uniformly across large frequency

ranges. With excessive decomposition, imperfections in real-

world periods cause energy from periodic events to be dis-

persed across several ranges. These constraints again motivate

our desire to adaptively expand the tree until we find periodic

behavior.

D. Filter to Frequency

While energy identifies the presence of periodic behavior,

we also must know the frequency of the behavior. We therefore

must map a position in the filter tree to a specific range of

periods.

At first glance, filter mapping seems easy: low- and high-

pass filters each separate the low and high frequency bands.

Unfortunately, because filters are symmetric, repeated applica-

tion of high pass filters “flip” the covered frequency bands. If

we define < as “covers lower frequencies than”, and Xab as

applying filter a then b to timeseries X , then XL < XH and

XLL < XLH , but XHH < XHL. This flip can be seen in

Figure 1, where the filters have been ordered by the frequency

ranges they cover.

The correct mapping of filters to frequencies is essential for

proper detection, and it also supports visualization of energy

4

over the frequency space as well. Figure 2 shows decomposi-

tion levels 6–12 of a signal with a 600s period. Each row in

the visualization represents a level of decomposition, and the

number of filter iterations is indicated by the row number to

the right. We typically omit the first few levels since periodic

behavior only becomes apparent with the finer resolutions

offered after several levels of decomposition. Each row is

divided into several blocks, showing increasing frequency from

left to right. The top row shows 100% of the energy across all

frequencies at the 6th level of decomposition. Each lower row

shows twice as many blocks, each representing energy over

bands of half the previous frequency.

Finally, we represent energy on the z-axis, using both

color (white is large amounts of energy, black little) and a

numeric value representing percentage of total energy. Because

frequency bands become narrower at each level, we scale color

in each row to the maximum energy in any band of that

row. Thus in Figure 2, we see brighter white areas near 600s

where two ranges show 5% and 3% of the total energy across

the 12th level of decomposition. Energy is not in one exact

range because of window alignment, and there is energy at

harmonics as well (Sections III-E1).

While we use visualization to assist our intuition, differ-

ences can be subtle, particularly in real data and when traffic

with different periods is mixed. To handle these subtleties, we

next present a quantitative detection method.

E. Energy and Frequency to Detection

We have shown how periodic events correspond to energy

(Section III-C), and how to relate that energy to frequencies

(Section III-D). We now combine these to describe our detec-

tion algorithm, exploiting the temporal structure of wavelets

to identify the start and stop times of a periodic behavior.

1) Detection: We detect events by comparing the energy in

a given frequency range to an energy threshold. Energy from

non-periodic events will disperse as we perform further de-

composition, and narrow in on smaller and smaller frequency

ranges. Conversely, energy from periodic events will remain

concentrated around a specific frequency throughout decom-

position. Therefore, to identify a periodic set of events, we

must look for strong energy in a narrow range of frequencies.

We ignore detections when the frequency range is too

wide. A range is narrow enough to consider detection if

the frequency range is within a set percentage of its center

period. From low to high frequencies we linearly decrease

this percentage from 10% to 1%. This relaxes the definition

of wide for lower frequencies since we expect lower frequency

periods to have more jitter (a few seconds of jitter on a half-

hour period is not as significant as a few seconds off on a 5

second period).

Our energy threshold is dependent on where in the filter

tree we are making a detection decision. Further down in the

tree at higher levels of decomposition, we lower the energy

threshold since each bin represents a narrower frequency

band and overall energy will be dispersed over more bins.

Specifically, we exponentially decrease the energy threshold,

such that the threshold for node n is tenergy = (cℓ/n), where
the empirically derived constant cℓ, is set based on the tree

depth. We currently start cℓ at 0.6 for the first 5 levels and

then increase it linearly.

Although we expect events occurring at interval p to provide

energy at frequency f = 1/p, they also give energy to

harmonics at small integer multiples of f . We therefore choose

the lowest frequency range in a harmonic set as the period of

an identified frequency.

We can misdetect the true frequency for several reasons.

We see energy at half the base frequency, or at half of a

harmonic of the base frequency. Noise and window mis-

alignment (frequencies that are not a power of two) also affect

the strength of signals; we look at these effects in our technical

report [3]. Typically we correctly find the base frequency, but

occasionally a harmonic is stronger.

2) Locating Events in Time: Once we have identified the

frequency range of a periodic series of events, we can estimate

when the events started and stopped by looking at the time-

series of coefficients corresponding to that frequency range.

Recall that each node in path P in the decomposition contains

a timeseries XP . Each element i in this timeseries indicates a

time xP
i . To find the beginning and ending of an event in time,

we look for a consecutive series of strong coefficients xP
i . Our

current simple approach is to compute the mean µ = E[XP],
then search backwards in time to find the first xP

b < µ as the

beginning, and forwards through the signal xP
i > µ to find the

next xP
e < µ, giving a period b ≤ i ≤ e. Often, the level of

decomposition which identified the frequency range contains

too little information in the time domain to make any useful

statements about timing. In these cases, we can back up the

filter tree two or more levels and examine coefficients at a

level with better temporal resolution.

3) Pruning to Reduce Computation: Although our filters

reduce to a simple set of additions and subtractions, we can

reduce the amount of work done by pruning out certain paths

through the filter tree. We prune branches from the filter tree

for two reasons. First, we cease expansion in frequencies

that exceed our sampling rate. Second, we stop expansion if

there is minimal energy in the node. In practice, we find that

frequency-based pruning is very effective, eliminating 70% of

expansion after three levels. Energy-based pruning saves a few

percent more; details are in our technical report [3].

F. Sensitivity to Noise

In practice traffic of interest, the signal, is always mixed

with other traffic, noise. We therefore define the signal-to-

noise ratio (SNR) as the ratio of periodic TCP flows to all TCP

flows, and we measure how SNR affects our ability to detect

traffic. Full details (found elsewhere due to space constraints)

show in controlled and real-world experiments that we can

find periodic traffic when it is at least 5–10% of the overall

events [3]. Pre-filtering is important to maximize SNR; for

example, if we can narrow the signal to periodic RSS traffic,

then we can filter from all TCP flows to just HTTP flows to

reduce the noise. We also find that long-term periodic traffic

5

is often persistent overnight, while human-induced noise is

sporadic and diurnal, so 24- or 48-hour analysis can often

detect periodic signals that might be missed mid-day.

IV. APPLICATIONS

With an understanding of the underlying fundamentals of

detection of low-rate periodic behavior (Section III), we next

discuss applications of our methodology. We show experiment

results of keylogger detection, and describe detection of OS

update polling and other applications.

A. Self-surveillance

While often periodic communication is beneficial to users

(for example, OS update checks), the addition or removal

of periodic behavior indicates a change which may warrant

further investigation. In this section we show that identifying

changes in periodic behavior, and the time when these changes

occur can be useful in self-surveillance.

Identifying changes in the periodic behavior of a given

host helps users better understand activities on their computer

Many operating systems and applications automatically poll

for updates. Benign applications sometimes do not disclose

automatic polling, or what information they transmit. Unde-

sirable applications, such as spyware and adware, often report

back to or request new information from the external master;

this contact is often hidden. Additionally, after infection, some

malware will terminate desired OS or application updates. In

all of these cases, a change in periodic traffic is something a

user will want to know, but this change may be obscured or

concealed. We reveal these changes.

Our approach will alert users when communication patterns

change, but we depend on users or other security software to

provide context to understand the cause of the change. For

example, a user may know that she recently installed Kazaa,

and so could trace a new addition of periodic communication

to the Gator adware component bundled with Kazaa. Alter-

natively, an unexpected change may prompt the user to run

anti-malware tools. Thus our goal is similar to other intrusion

detection and data integrity tools—we alert a user a suspicious

change which requires further investigation.

1) Detecting a keylogging application: Many keyloggers

report on user activity at specified intervals, to inform their

masters what they have learned and that they are still

operational—we confirmed supervisor-configured reporting in-

tervals in both SpyBuddy and Keyboard Guardian. A sudden

addition of a new periodic behavior, could indicate an addition

of just such a keylogger.

To demonstrate we can detect a keylogger, we install

Keyboard Guardian on a dedicated Windows computer. We

monitor all TCP flows from this computer for a three day

period while using it for occasional e-mail and web browsing

(dataset [18]). To highlight our ability to localize events in

time (Section III-E2), we analyze a single 3-day period of

observation at once; in operation we would add windowed,

continuous observation (details in technical report [3]).

On the second day of the experiment, we install Keyboard

Guardian at 4pm, and set the keylogger to email reports every

(a) Traffic without keylogger (before installation).

(b) Traffic with keylogger (after installation).

Fig. 3. Visualization before and after installation of a keylogger.

three hours. Throughout the experiment, we continue regular

usage of the test machine, which results in an overall SNR of

0.1 after the keylogger install.

Our system correctly identifies the presence of new periodic

communication between 12pm and 9pm on the second day

of our experiment, correctly bracketing the 4pm installation

time of the keylogger (Section III-E2). The system is close to

identifying the actual reporting period of our keylogger install,

and identifies the period of reporting as 6 hours instead of the

actual 3-hour period (around 21,600s, 46µHz and not 10,800s,

92µHz). As discussed in Section III-E1, we occasionally

identify half the base frequency as the actual frequency for

an identified periodic event because we choose the lowest

frequency in a set which passes our detection threshold.

To gain insight into how our multi-resolution analysis helps

identify the presence or absence of Keyboard Guardian’s

reporting, Figure 3 shows a visualization of traffic periodicity

before and after the keylogger install. The figure shows

clear changes between traffic before (Figure 3(a)) and after

(Figure 3(b)) the installation: afterwords we see new, strong

periodic traffic around our reporting period (10,800s, 92µHz),
at double the frequency (around 21,600s) and at harmonics

(around 5400s, 3600s, and 2700s).

Our system detects the change shown in Figure 3 automati-

cally by comparing strong energy against a frequency-specific

6

threshold. Surprisingly, the base frequency is not very strong,

less than 1%. While the base frequency may not be very

distinguishable visually, our system lists it as being past the

detection threshold—highlighting the importance of automatic

detection (Section III-E1). This example shows our ability to

detect low-rate regular traffic from malicious software. Most

importantly, we can identify when changes in such periodic

communication occur, giving the user context for identified

periodic communication.
2) Positive Examples of Self-Surveillance: Our approach to

self-surveillance applies to detecting positive uses of polling

as well as negative uses. For example, the security policy of all

operating systems and many applications includes automatic

polling for updates. Just as network administrators wish to

detect bad behavior, they may also wish to detect the absence

of good behavior. In our technical report [3], we demonstrate

we can detect a sudden absence in OS update checks for a

Fedora Linux box polling for updates via yum-updatesd.

B. Detecting Malware and Peer-to-Peer Applications

In the previous section, we looked at how our system can

be used for self-surveillance. Next we briefly discuss how our

methods can be used by network administrators to identify

hosts which may be running specific applications, such as

malware or peer-to-peer file sharing.

Many applications such as peer-to-peer file sharing, RSS

aggregators, and adware make use of regular and periodic

connections, and the period of their communication is often

within a known range. In high-speed links, line-rate deep-

packet inspection can be difficult or expensive. Our approach

can assist application detection by triaging line-rate traffic,

isolating certain flows or hosts for deep packet inspection.

While we cannot confirm the presence of an application

because periodic traffic may be due to other causes, triage

can reduce the cost of deep-packet inspection.

We demonstrate our system’s ability to triage in our tech-

nical report [3]. In one test of 500 random hosts, we look

for hosts running RSS readers. Identifying periodic traffic

eliminates 68% from consideration with only a 4% false-

negative rate; the same approach could triage for malicious

periodic traffic such as adware or keyloggers.

V. ROBUSTNESS OF THE APPROACH

Because some targets of our work are adversarial, we must

assume they will understand our work and actively attempt

to circumvent it. Our detection is sensitive to noise [3]. An

attacker can hide from our current system by lowering the

SNR to 5% or less. Fortunately, lowering traffic rates generally

decreases the effectiveness of negative traffic, and we are

therefore forcing the attacker to take a hit. Alternatively, an

application can evade our detection scheme by adding jitter

to its periodic behavior. By increasing jitter, the energy of the

signal is diffused. Through experimentation, we have found

that when observing for a duration of up to sixty times the

length of the period, a jitter of more than 15% is relatively

effective at hiding a periodic example. However, we can

counter this defense by employing longer observation periods.

VI. CONCLUSIONS

In this paper we have shown that low-rate periodicity is

common to several broad classes, both good (OS updates), bad

(keyloggers and malware), and ugly (adware), and that these

applications are widely deployed on public networks. We have

explored a wavelet-based approach to identify such periodic

behavior, and begun to explore the sensitivity and robustness

of this approach. Promising applications of such analysis are

self-surveillance, as a user watches his or her own traffic to

detect unexpected changes, and pre-filtering, where a network

operator deploys the scheme to reduce the number of hosts to

carefully examine for possible malware infection.

REFERENCES

[1] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network
traffic anomalies. In Proc. of ACM SIGCOMM Internet Measurement

Workshop, pages 71–82, Marseille, France, Oct 2002. ACM.
[2] G. Bartlett, J. Heidemann, and C. Papadopoulos. Inherent behaviors for

on-line detection of peer-to-peer file sharing. In Proc. of 10th IEEE

Global Internet, pages 55–60, Anchorage, Alaska, USA, May 2007.
IEEE. An extended version is ISI-TR-2006-627.

[3] G. Bartlett, J. Heidemann, and C. Papadopoulos. Using low-rate
flow periodicities in anomaly detection. Technical Report ISI-TR-661,
USC/Information Sciences Institute, Jul 2009.

[4] F. Constantinou and P. Mavrommatis. Identifying known and unknown
peer-to-peer traffic. In IEEE International Symposium on Network

Computing and Applications (NCA), pages 93–102, Jul 2006.
[5] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dynamics of

IP traffic: A study of the role of variability and the impact of control.
In Proc. of ACM SIGCOMM Conference, pages 301–313, Aug 1999.

[6] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki.
Exploiting temporal persistence to detect covert botnet channels f.
giroire, j. chandrashekar, n. taft, e. schooler and k. papagiannaki. recent
advances in intrusion detection (raid). september 2009. [electronic paper
edition]. In Proceedings of the, xxx, Sep 2009. Springer-Verlag.

[7] Y. Gu, A. McCallum, and D. Towsley. Detecting anomalies in network
traffic using maximum entropy estimation. In Proc. of ACM Internet

Measurement Conf., pages 345–350, Oct 2005.
[8] X. He, C. Papadopoulos, J. Heidemann, and A. Hussain. Spectral

characteristics of saturated links. Technical Report USC-CSD-TR-827,
University of Southern California Comp. Sci. Dept., Jun 2004.

[9] X. He, C. Papadopoulos, J. Heidemann, U. Mitra, and U. Riaz. Remote
detection of bottleneck links using spectral and statistical methods.
Computer Networks, 53(3):279–298, Feb 2009.

[10] A. N. Hussain. Measurement and Spectral Analysis of Denial of Service

Attacks. PhD thesis, U. of Southern California, Comp. Sci. Dept.
[11] T. Karagiannis, A. Broido, M. Faloutsos, and kc claffy. Transport layer

identification of P2P traffic. In Proc. of ACM SIGCOMM Workshop on

Internet Measurement (IMC), pages 121–134, Oct 2004.
[12] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel

traffic classification in the dark. In Proceedings of the ACM SIGCOMM

Conference, pages 229–240, Philadelphia, PA, USA, Aug 2005.
[13] A. Magnaghi, T. Hamada, and T. Katsuyama. A wavelet-based

framework for proactive detection of network misconfigurations. In
Proceedings of the, pages 253–258, Portland, Oregon, USA, Sep 2004.

[14] U. Mitra, A. Ortega, J. Heidemann, and C. Papadopoulos. Detecting
and identifying malware: A new signal processing goal. IEEE Signal

Processing Magazine, 23(5):107–111, Sep 2006.
[15] G. Nychis, V. Sekar, D. Andersen, H. Kim, and H. Zhang. An empirical

evaluation of entropy-based traffic anomaly detection. In Proc. of 8th

ACM Internet Measurement Conf., pages 151–156, Oct 2008.
[16] C. Partridge, D. Cousins, A. W. Jackson, R. Krishnan, T. Saxena, and

W. T. Strayer. Using signal processing to analyze wireless data traffic.
In Proc. of 1st ACM Workshop on Wireless Security, pages 67–76, 2002.

[17] D. Taubman and M. W. Marcellin. JPEG2000: image compression

fundamentals, standards, and practice. Kluwer Academic Publishers,
Boston, MA USA, 2002.

[18] USC/LANDER project. Specialized TCP flow traces, PREDICT ID
USC-LANDER/specialized tcp flow usc-20081209, Dec 2008.

