
Inherent Behaviors for On-line Detection of

Peer-to-Peer File Sharing

ISI-TR-627, December 14, 2006

Genevieve Bartlett1, John Heidemann1, and Christos Papadopoulos2

1 University of Southern California/ISI bartlett,johnh@isi.edu
2 Colorado State University christos@cs.colostate.edu

Abstract. Blind techniques to detect network applications—approaches
that do not consider packet contents—are increasingly desirable because
they have fewer legal and privacy concerns, and they can be robust to
application changes and intentional cloaking. In this paper we identify
several behaviors that are inherent to peer-to-peer (P2P) traffic and
demonstrate that they can detect both BitTorrent and Gnutella hosts
using only packet header and timing information. We identify three basic
behaviors: failed connections, the ratio of incoming and outgoing connec-
tions, and the use of unprivileged ports. We show that while individual
behaviors are sometimes effective, they work best when used together.
We quantify the effectiveness of our approach using two day-long traces,
from 2005 and 2006, showing that they are quite accurate: BitTorrent
hosts are detected with an 83% true positive rate and only a 2% false
positive rate, and Gnutella hosts with a 75% true positive rate and a 4%
false positive rate. Our system is suitable for on-line use, with 75% of
BitTorrent hosts detected in less than 10 minutes of trace data.

1 Introduction
Identifying and filtering network traffic is central to firewalls and intrusion-
detection systems. The majority of these systems deployed today use ports or
packet signatures to classify traffic for filtering. While fast and effective for typ-
ical traffic, these approaches are becoming less and less effective because both
ports and packet contents are easy to conceal, either intentionally or accidentally.

We see three reasons for a greater need to identify network applications by
packet header information alone, rather than packet payload. First, benign traffic
often varies its port usage and packet contents. For example, traffic using remote-
procedure calls, multiplexed protocols such as SOAP, or UDP-based protocols
(like NSF or SIP) often varies port usage and communicates ports out-of-band.
An increasing use of traffic encryption hides packet-contents, both with network-
level approaches like IPsec, and application-level tunnels like ssh or TLS.

Second, malware and protocols that receive mixed acceptance often inten-
tionally hide identity by varying port usage and packet contents. Protocols such
as Skype and P2P file sharing often hide themselves out of concern for restrictive
use policies in some networks.

Finally, even when traffic is not accidentally or actively concealing itself,
ISP policy concerns sometimes prevent analysis of data packet contents. For



example, in the United States, laws about student privacy and wiretapping can
be interpreted to preclude analysis of packet data contents.

The goal of this paper is to identify network applications based on their inher-

ent characteristics without considering packet contents. We therefore distinguish
application behaviors that are easily changed or incidental, from those behaviors
that are inherent and would incur a performance penalty or require application
restructuring to change. In this sense, we are investigating blind techniques to
identify applications [6].

We evaluate our approach by considering two popular P2P file sharing appli-
cations: BitTorrent and Gnutella. We evaluate our detection methods with two
full day traffic traces taken from a regional ISP in 2005 and 2006, and compare
our detection rates to ground truth obtained by manual analysis of the data.

The contribution of this paper is the identification and evaluation of several
metrics that are applicable to blind identification of multiple types of P2P file
sharing applications. We show that these metrics can detect hosts running Bit-
Torrent applications with an 83% true positive rate with a 2% false positive rate
and detect hosts running Gnutella with a a 75% true positive rate with a 4%
false positive rate. Of the P2P peers caught by our system, 75% required less
than 10 minutes of trace data to determine P2P activity. We suggest that our
approach to identifying inherent behaviors will be applicable to other protocols.

2 Related Work

There are three general areas of related work: detection based on network port
usage, packet payload, and traffic behavior.

Port- and payload-based signatures are widely used today. Unfortunately,
both rely on relatively ephemeral behaviors: port assignments are easily changed,
and payload contents can be hidden by encryption or randomization. We there-
fore do not consider these approaches further.

An alternative is to detect based on network behaviors such as an applica-
tion’s packet trace and communications pattern, since these can be often more
difficult to conceal. Karagiannis et al., identify P2P traffic from connection pat-
terns and the concurrent use of UDP and TCP [5]. Constantinou and Mavrom-
matis classify P2P traffic based on connection direction and number of peers in
a connected group [3]. In later work, Karagiannis et al. introduce BLINC [6],
a general classification mechanism that classifies hosts based on protocol us-
age, port usage and connection patterns. These methods rely on behavior that
is inherent to P2P applications. While our approach is similar in that it uses
inherent behavior, our metrics require significantly less state than the methods
used in this previous work. Further more, we quantify our on-line detection time.
We differ from BLINC further in that our metrics are selected to be specific to
P2P file sharing, and work by drawing out the inherent characteristics which are
unique to P2P.

Closest to our work is that by Collins et al. [2] who distinguish BitTorrent
flows from FTP, HTTP and SMTP flows between pairs of hosts. They study
three metrics: packet size (looking for small control messages), amount of data ex-
changed between hosts, and rate of failed connections. We do not consider packet



 0  200  400  600  800  1000  1200  1400

Time (in seconds)BitTorrent Active

Incoming Connections

Outgoing Connections

Successful
Failed

Failed with RST

Fig. 1. BitTorrent Peer

 0  200  400  600  800  1000  1200  1400

Time (in seconds)Gnutella Active

Incoming Connections

Outgoing Connections

Successful
Failed

RST

Fig. 2. Gnutella Leaf Peer

size to be an inherent metric since it is easily spoofable. The later two metrics are
inherent, and we have independently determined that failed connections are an
important indicator of P2P traffic. Our work differs from theirs through the ad-
dition of two other inherent behaviors (ratio of incoming-to-outgoing connections
and privileged-to-non-privileged ports); by demonstrating that this approach ap-
plies to multiple kinds of P2P traffic, not just BitTorrent; and by demonstrating
that our approach can operate on-line rather than post-facto.

3 Inherent Behaviors in P2P

In this section we investigate three behaviors inherent to P2P applications. In
Section 4 we map these behaviors to specific metrics for detection.

Our target applications are BitTorrent and Gnutella as specific targets. Both
are file sharing protocols described in detail elsewhere. For our purposes, the
important characteristics of BitTorrent is that a peer typically contracts a tracker
to find out about other peers. It then directly contacts many peers (often 20)
to exchange pieces of those files. Gnutella instead uses a two-tier system of leaf

peers and ultrapeers. Leaf peers typically talk only to ultrapeers, while ultrapeers
communicate widely with both each other and leaf peers.

Figures 1 and 2 show new TCP connections for both BitTorrent and Gnutella.
The x-axis represents time in seconds, while each connection is numbered sequen-
tially on the y-axis. Symbols indicate when a connection is successfully started (a
square) and when they fail to connect (a plus) or are terminated with a RST (an
X). Figure 1 shows a BitTorrent client performing a partial BitTorrent download
of a large ISO image over 15 minutes. Figure 2 depicts the connections made
from a Gnutella leaf node that performs several searches and partial downloads
over 1240s. Since the Gnutella peer was a leaf peer that shared no files, there
were no incoming TCP connections.

3.1 Peer Coordination and Failed Connections

P2P file sharing is effective because peers share with each other directly rather
than only contacting centralized servers. Since peers are end-user machines, there
is considerable churn as they come and go frequently [1]. Mechanisms which track
the presence of peers do so imperfectly, and this information is quickly out of
date when given to a new peer. As a result, an inherent behavior of P2P sharing
are many failed attempts to contact peers that have left the network.

At the network level, these failed contacts result in TCP RST messages from
a busy or no-longer participating peer, or in multiple SYN packets attempting
to start a connection and timing out. We see both these behaviors in Figure 1:



at time 0 four hosts out of ten send a reset and three hosts do not respond
at all. At time 680s we observe the peer that we monitor attempt to replace
a departed neighbor and there is another burst of failures. The same behavior
occurs in Gnutella, where Figure 2, shows several attempted downloads (e.g. at
700s and 900s) In four out of ten of these attempted downloads, two or more
sources never respond or sent a TCP reset.

This behavior is not only common to P2P traffic, but relatively uncommon
among more traditional client/server applications. In client/server protocols,
the servers are often well known and persistent. Failures are usually due to
misconfiguration or hardware failure and there are not usually small clusters of
failures.

3.2 Bidirectional Connections

P2P applications not only start connections with peers, but each peer attempts
to maintain this network independently. Since peers are equivalent, this means
each initiates and receives new connections. Client/server hosts instead primarily
either initiate connections (clients) or receive them (servers). Thus, unlike client-
server applications, an inherent behavior of many hosts in a P2P application is
a balance of both incoming and outgoing connections.

We can see this in our samples, where in Figure 1, the BitTorrent peer makes
44 outgoing connections and accepts 30 incoming connections. Gnutella’s two-
level architecture differs, and leaf nodes initiate connections (in Figure 2 the
leaf starts 5 connections to ultrapeers at time 0), but ultrapeers maintain both
incoming and outgoing connections.

3.3 User Accessibility

P2P file sharing applications are typically user-level processes operating on a va-
riety of platforms and user environments, using unprivileged ports. Thus, a P2P
file-sharing connection will typically have source and destination ports above
1024, unlike server applications such as mail and web servers, which typically
use well-known privileged ports.

In Figure 1, out of 44 peers contacted by the BitTorrent peer, none were
listening on a privileged port. Additionally, out of the 143 unique peers suggested
by the tracker, only one was listening on a privileged port. All connections in
the trace used unprivileged source ports. In Figure 2, out of 119 remote peers
contacted by the Gnutella peer, none were listening on a privileged port. As with
BitTorrent, all connections in the trace used unprivileged source ports.

4 Implementation

The previous section outlined three P2P file sharing application behaviors which
are identifiable at the network level. In this section we translate these behaviors
into specific, testable metrics and describe how they can be used to perform
on-line detection. Given the metrics and corresponding tests, we re-evaluate the
status of each host as new associated flows appear, looking for whether that host
is P2P or non-P2P. We describe this process in detail in Section 4.3.



4.1 Translating Behaviors to Metrics

Peer coordination and failed connections: As discussed in section 3.1, coordi-
nation with other peers often corresponds to bursts of failed connections. We
capture this behavior with the following ratio of failed connections :

MPC =
failedout

successfulout + failedout

where failedout is the total number of new outgoing connections that fail
and successfulout is the total number of new outgoing connections that were
successfully established. Values of MPC tend to be low for normal clients and
servers, medium (0.1–0.8, our thresholds) for P2P hosts, and high (more than
0.8) for hosts doing port scans.

Bidirectional connections: As discussed in section 3.2, P2P clients both initiate
and receive new connections. We to capture this behavior we use the following
ratio of bidirectional connections,

MBC =
successfulin

successfulout + successfulin

where successfulin and successfulout is the total number of new, successfully
established, incoming and outgoing connections. The metric MBC will be close
to 1 for servers, and close to 0 for clients, and we consider values between 0.2
and 0.9 indicative of P2P hosts.

User accessibility: As discussed in section 3.3, although the individual port num-
ber varies, P2P clients connect to unprivileged ports, while other clients connect
to standard servers on privileged ports. Thus we define:

MUA =
successfuluser2user

successful in + successfulout

where successfuluser2user is the number of successful connections which
have a source and destination port in the unprivileged range and successfulin +
successfulout is the number of total new connections at that host which were
successful. For clients and servers, the expected value for ratio MUA is near 0.
Hosts doing user-level P2P run closer to 1; we consider any value over 0.2 to
indicate a potential P2P host.

4.2 Metrics to Tests

We must now map individual ratios MX into binary tests that confirm or dis-
claim P2P traffic on a host. P2P traffic corresponds to medium values of each
ratio, so we define high and low thresholds hX and `X . In general, high values
indicate non-P2P behaviors (such as port-scanning), so exceeding hX terminates
the test as non-P2P host. Low values often occur when a new host appears, so
we consider values below lX as inconclusive. Values in-between the thresholds
after a warm-up number of connections positively indicate a P2P host.

While each metric by itself corresponds to a specific P2P behavior, we found
individual metrics to be noisy. We therefore test multiple metrics in parallel. A



negative P2P result from any metric disqualifies a host, while a positive result
from all metrics is required to flag the host as P2P.

Typically, we evaluate each metric over all connections over a sliding time
window until we get either positive or negative confirmation of P2P activity.
However, failed connections captured by MPC primarily occur at the beginning
of a P2P session. When combining multiple metrics, MPC often triggers before
the others, but then can be “washed out” by the time the other metrics trigger.
We therefore define a “sticky” equivalent MsPC, as indicative of P2P traffic
provided no metric indicated non-P2P and the host was flagged as P2P over the
last window of time.

4.3 System Operation

Our system runs on top of a continuous network tracing infrastructure [4].
We transform the packet-level trace into a flow-level trace by observing only
the TCP SYN and SYN-ACK packets. We identify failed connections by four
or more duplicate SYNs, and compute the ratio of incoming connections and
privileged/non-privileged ports by looking at all flows to a particular destina-
tion. We process the data sequentially, on-line, evaluating the metrics for each
source IP address once we have 10 connections or more. If at any time the metrics
indicate a positive or negative result we classify the host as P2P or non-P2P and
then discard any remaining information in the time window pertaining to that
host. Otherwise, we continue to acquire information about that host until we
reach a conclusion, or until flows time out after the configurable sliding window
of time, currently set at 20 minutes.

5 Evaluation
We next evaluate our approach to determine how detection accuracy interacts
with false positive rates.

Our evaluation uses network packet traces from two network taps at Los
Nettos, a regional ISP in the Los Angeles area serving both commercial and
academic institutions. We collected two datasets, each about 24 hours long,
August 31, 2005 and October 3 2006.We see qualitatively similar results for
both traces and present only the 2006 data here due to space constraints.

5.1 Detection Accuracy for BitTorrent

We first look at detection accuracy to verify that our approaches do successfully
identify P2P traffic.

To establish ground truth, we classify some hosts as known BitTorrent hosts

first by identifying flows on the default BitTorrent tracker port (6969). We then
manually verify that the destination was a BitTorrent server by contacting it
ourselves within several hours of the trace collection.

The Known BitTorrent section of Table 1 shows the 130 hosts we identified.
We first observe that each individual metric is successful at detecting the ma-
jority of known BitTorrent hosts (85–92%), and that MUA detects the most.
Our 2005 trace (not shown here due to space) shows similar qualitative results.

Among the individual metrics, MUA appears to be the best, with both low
false positives and false negatives. However, this advantage is an artifact of our



metric: MPC MBC MUA MsPC+BC MsPC+UA Mall

Total unique hosts: 9,656

P2P hosts : 290
Known BitTorrent hosts: 130

True Positives 110 (85%) 114 (88%) 120(92%) 108 (83%) 109 (84%) 108 (83%)
False Negatives 20 (15%) 16 (12%) 10 (8%) 22 (17%) 21 (16%) 22 (17%)

Known Gnutella hosts: 160
True Positives 123 (77%) 109 (68%) 155 (97%) 93 (58%) 120 (75%) 91 (57%)
False Negatives 37 (23%) 51 (32%) 5 (3%) 67 (42%) 40 (25%) 69 (43%)

Other Hosts : 9,366
Likely non-P2P: 4,075

False Positives 530(13%) 1,018(25%) n/a 81(2%) n/a n/a
True Negatives 3,545(87%) 3,057(75%) n/a 3,994(98%) n/a n/a

Discarded as likely-P2P: 608

Unclassified hosts: 4,683
Flagged as P2P 702 (15%) 1,639(35%) 1,592(34%) 140(3%) 187(4%) 70(1%)
Not flagged as P2P 3,981(85%) 3,044(65%) 3,091(66%) 4,543(97%) 4,496(96%) 4,613(99%)
Table 1. Summary of results of BitTorrent detection for 2006 Data Set.

ground truth—since non-BitTorrent traffic (described in the next section) always
includes some privileged ports, this metric is artificially perfect. Unfortunately,
it will also consistently classify any applications that use only non-privileged
ports as P2P, including direct user-to-user chat programs and games. Our simple
definition of ground truth places these applications in the unknown category and
therefore excludes them from this analysis. However, we suggest that UA is useful
in Mall because it helps eliminate the few client-server applications that would
be detected as a false positive by MsPC+BC.

Finally, we observe that the combined metrics MsPC+BC and Mall perform
almost as well as the stand-alone metrics at detecting true positives (83% and
84% compared to 85–92%), and the combined metrics perform much better in
reducing false positives (2% instead of 13–25%).

5.2 Understanding false positive rate

Even if the system performs well at detecting P2P hosts, it will not be useful if
it also falsely tags many non-P2P hosts as P2P. We therefore evaluate the false
positive rate of individual and combined metrics.

Although it is easy to confirm the presence of known P2P traffic to a host,
it is significantly more difficult to prove absence of P2P traffic. To establish a
rough body of non-P2P hosts, we first remove all known P2P hosts from our
population and select half of the remaining hosts. (We will use the other half in
Section 5.4.) While these hosts include no known P2P hosts (those running on
well known P2P ports), there may be some hosts using non-standard ports. We
assume these non-standard ports are non-privileged, so we therefore discard 608
hosts that have only non-privileged-to-non-privileged ports as “potential P2P”.
We label the remaining hosts as likely non-P2P. This decision is conservative
since we know that it is possible to tunnel P2P traffic over well-known ports
(such as web port 80).



We use this set of likely non-P2P hosts to look for false positives in our met-
rics. We expect that individual metrics will have some number of false positives:
port scanners and misconfigured machines or servers can accidentally trigger
MPC, and some services that have bidirectional traffic (such as DNS) and user
machines that host some servers can trigger MBC. Note that we cannot consider
MUA with this methodology because our definition of likely non-P2P distorts
this metric.

The likely non-P2P section of Table 1 shows these results. Individual metrics
show moderate-to-high false positive rates (13–25%). Because the number of
likely non-P2P hosts is so much larger than the number of known P2P hosts,
these false positive rates imply 5–10 errors for every true positive. Such high false
positive rates mean that an individual metric is impractical without additional
confirmation. Examination of specific traces suggest that many MPC failures
are due to false identification of port scans as P2P. We examined a few cases of
MBC failure; they were typically due to user hosts that also run small server
applications.

Our hope is that combining multiple metrics can reduce the false positive
rate, and MsPC+BC shows a false positive rate of only 2% rather than 13–
25%. This success is because the false positives are triggered by different cir-
cumstances. Combining all three metrics in Mall eliminates all false positives,
but as described above this is an anomaly due to our definition of likely-non-P2P.

From our evaluation of true and false positives we conclude that the combined
metrics are essential to get good accuracy and few false positives. The combined
metrics show only a few percent reduction (2–5%) in detection accuracy for
BitTorrent (although a larger drop for Gnutella, 19%, when using all metrics),
while the percent of false positives is cut in four.

5.3 Effectiveness for Gnutella

Since our detection methods are based on behaviors of P2P applications in gen-
eral, and not specific to the BitTorrent protocol, we expect that our system is
capable of detecting hosts running other P2P applications. To test this claim we
next evaluate our approach on Gnutella hosts.

We establish Gnutella ground truth as all hosts that contact known Gnutella
ultrapeers. We track Gnutella ultrapeers by joining the Gnutella network repeat-
edly on the day of trace collection and recording lists of the suggested ultrapeers.

Some protocol differences between BitTorrent and Gnutella affect our met-
rics, however. We expect that metrics MPC and MUA will perform well at
detecting Gnutella, but because of Gnutella’s two-tiered architecture, MBC will
not perform nearly as well.

The known Gnutella section in Table 1 shows that MPC alone detects 77%
of the Gnutella hosts. However, as discussed in Section 5.2, this metric alone
has a high false positive rate and so we need combined metrics to reduce false
positives. We see that Mall is still fairly effective at detecting Gnutella, detecting
57% of the known Gnutella hosts.

We observed that MBC does not work well with Gnutella because only ultra-
peers are bidirectional, not Gnutella leaf nodes unless a leaf peer is uploading.



We observe that MsPC+UA detects nearly as many true positives as MPC
alone (75% vs. 77%), but significantly decreases false positives. For networks
where Gnutella is very prevalent, this metric may be preferable to Mall.

5.4 Estimating previously undetected P2P hosts

Our above analysis isolated traffic into known-P2P and likely-non-P2P categories
to study the accuracy of our approaches. We next look at unclassified traffic to
estimate how many hosts appear to be P2P file sharing but escaped identification
as known-P2P.

To estimate P2P traffic in unclassified traffic, we start with the half of hosts
not considered above. These hosts exclude all traffic to known trackers, so they
all would be unclassified by detection schemes using known sites. We then run
our detection algorithms on these hosts and examine the hosts flagged as P2P.

The unclassified section of Table 1 shows our estimate of P2P traffic in this
sample of hosts. Our combined metrics flagged 1.5% (70 hosts) of the unclassified
hosts as running P2P applications. Our analysis of the false positive rate of
MsPC+BC suggests that at least half of these are true positives. Although we
do not know the likely true positive rate for Mall, it should be greater since
Mall reduces further the number of flagged hosts by including metric MUA.

To confirm that some of these 70 hosts have P2P traffic we looked at what
ports they use. Of these 70 hosts, 17 made connections to remote hosts on default
BitTorrent ports (6969, 6881–6888) and 15 made connections to remote hosts on
the default Gnutella port (6346), strongly suggesting that we successfully found
true P2P traffic. (If the host had contacted a known tracker or ultrapeer we
would have already classified it as known-P2P.) We conjecture that some of the
other hosts were doing P2P sharing on non-standard ports, although we could
not confirm that at the time. Finally, our analysis of these unclassified hosts
sheds some light on the benefit of adding MUA to form Mall—this addition
reduces the number of hosts identified as potential P2P in half (70 vs. 187). Of
the 17 hosts just described none are eliminated, suggesting (but not proving)
that Mall does not reduce the true positive rate.

5.5 Detection speed

As well as being accurate, we wish to detect P2P hosts quickly. To estimate
detection time we consider known P2P hosts. We identify the first contact with
a known tracker or ultrapeer as the “start” time and then determine how much
later we classify that host as P2P. This start time corresponds to an unrealizable,
idealized detection system based on a perfectly known P2P network, and so it
represents a conservative estimate of our detection time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

C
D

F

Time in Minutes

2006, Gnutella
2005, BitTorrent
2006, BitTorrent

Fig. 3. Time until detection

Figure 3 shows CDFs of detection time
for both BitTorrent and Gnutella for our two
traces. As is shown, about 75% of the time
we can identify a P2P client in less than ten
minutes, and about one-fifth of the time we
can decide within a minute. Given that P2P
applications often run for tens of minutes, we



believe these detection times are more than
sufficient for on-line identification.

To understand the cause of the delay we
looked at how the combined metrics operate. For BitTorrent, MPC triggers
quickly, but MBC is much slower. These timings are consistent with the behav-
iors they track, since failed connections occur when a new peer starts up and
actively probes other peers, while bidirectional communication happens only
later as other peers learn about the target host and connect to it. In the case
of Gnutella, MPC often does not trigger till several minutes after contacting
ultrapeers. We believe this slower trigger is because ultrapeers are more reliable
than typical BitTorrent peers, and with Gnutella MPC is triggered only when
a peer attempts to contact remote resources and download files.

In addition to the delay described above, our current implementation batches
packet traces into 2–6 minute segments. Thus actual delay in our current imple-
mentation is up to 16 minutes 75% of the time. This batching is due to our data
collection system [4] and could be greatly reduced or eliminated by integrating
trace collection with metric evaluation.

5.6 Parameter sensitivity

Our system has several parameters that affect operation, including the size of the
sliding time window, minimum number of connections considered, and thresh-
olds. Due to space limitations we provide a detailed evaluation of these factors
in Appendix B.

6 Conclusions
We have shown that one can map inherent P2P behaviors into metrics that allow
on-line detection of P2P hosts. We showed that a combination of metrics allows
for high accuracy with low false positives with the majority of hosts detected in
less than 10 minutes.

Acknowledgments and Data Availability
We would like to thank Los Nettos for facilitating and granting access to trace
collection. We would also like to thank Mark Baklarz and Steve Sutor of USC
for discussions on current practices for tracking P2P users at USC.

This material is based on work supported by the United States Department
of Homeland Security contract number NBCHC040137 (“LANDER”). It is also
supported by the National Science Foundation (NSF) under grant number CNS-
0626696, “NeTS-NBD: Maltraffic Analysis and Detection in Challenging and
Aggregate Traffic (MADCAT)”. All conclusions of this work are those of the
authors and do not necessarily reflect the views of the sponsors.

Our data sets are made publicly available through the Predict project as
USC-LANDER-p2p detection-20050831and USC-LANDER-p2p detection-20061003.

References

1. M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers and streaming
media. In Proceedings of the ACM HotNets I, pages 107–112, Princeton, NJ, USA,
October 2002.



2. M. Collins and M. Reiter. Finding peer-to-peer file-sharing using coarse network
behaviors. In Proceedings of the European Symposium On Research In Computer
Security, Hamburg, Germany, September 2006.

3. F. Constantinou and P. Mavrommatis. Identifying known and unknown peer-to-peer
traffic. In IEEE International Symposium on Network Computing and Applications
(NCA), pages 93–102, Cambridge, MA, USA, July 2006.

4. A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos, and J. Ban-
nister. Experiences with a continuous network tracing infrastructure. In Proceedings
of the ACM SIGCOMM Workshop on Mining network data Mine Net, pages 185–
190, Philadelphia, PA, USA, August 2005.

5. T. Karagiannis, A. Broido, M. Faloutsos, and kc claffy. Transport layer identifica-
tion of p2p traffic. In Proceedings of the ACM SIGCOMM Workshop on Internet
Measurement (IMC), pages 121–134, Taormina, Sicily, Italy, October 2004.

6. T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel traffic
classification in the dark. In Proceedings of the ACM SIGCOMM Conference, pages
229–240, Philadelphia, PA, USA, August 2005.



APPENDIX

A Evaluation of Second Dataset

To further determine the effectiveness of our approach, we perform a second
evaluation of our metrics using our second data set from 2005. We expect that
the results from the 2005 data set are similar to the results obtained from the
2006 data set. Our results over the 2005 data set are summarized in Table 2.

metric: MPC MBC MUA MsPC+BC MsPC+UA Mall

Total unique hosts: 10,415

P2P hosts : 251
Known BitTorrent hosts: 251

True Positives 210 (84%) 219 (87%) 225 (90%) 201 (80%) 204 (81%) 201 (80%)
False Negatives 41 (16%) 32 (13%) 26 (10%) 50 (20%) 47 (19%) 50 (20%)

Other Hosts : 10,415
Likely non-P2P: 4,378

False Positives 525 (12%) 1,313 (30%) n/a 175 (4%) n/a n/a
True Negatives 3,853 (88%) 3,065 (70%) n/a 4,203(96%) n/a n/a

Discarded as likely-P2P: 704

Unclassified hosts: 5,082
Flagged as P2P 711 (14%) 1,677 (33%) 1,575 (31%) 101 (2%) 152 (3%) 50 (1%)
Not flagged as P2P 4,371 (86%) 3,405 (67%) 3,507 (69%) 4,981 (98%) 4,930 (97%) 5,032 (99%)
Table 2. Summary of results of BitTorrent detection for 2005 Data Set.

A.1 Detection accuracy for BitTorrent in 2005 data

Following the same methodology as described in section 5.1, we examine our
2005 data and show in this section that our detection accuracy is similar across
both data sets.

The Known BitTorrent section of Table 2 shows the 251 hosts we identified
in our 2005 data set as running BitTorrent. As expected, our detection accuracy
with the 2005 data set is similar to our 2006 data set. Individual metrics are
successful at detecting the majority of BitTorrent hosts (84–90%). Combined
metrics perform almost as well (80–81%) as individual metrics over the 2005
data set.

These results are comparable to the results we obtained using our 2006 data
set. As seen in the 2006 data set, combining metrics slightly decreases the true
positive rate, but significantly decreases the false positive rate (up to 26%) as
shown by the combined metric MsPC+BC. Again, false positive rates involving
metric MUA are not included in the table because our definition of likely non-
P2P hosts distorts the false positive rate for metric MUA.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
os

iti
ve

 R
at

e 
(P

os
iti

ve
s/

T
ot

al
)

Lower Threshold Value for M1

True Positives, 2005
True Positives, 2006

False Positives, 2005
False Positives, 2006

(a) MPC True and False Positive Rates

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
os

iti
ve

 R
at

e 
(P

os
iti

ve
s/

T
ot

al
)

Lower Threshold Value for M2

True Positives, 2005
True Positives, 2006

False Positives, 2005
False Positives, 2006

(b) MBC True and False Positive Rates

Fig. 4. Effect of MPC and MBC Lowerbound Thresholds

B Result Sensitivity

We use several fixed constants in our system: the metric thresholds, the sliding
time window size and the minimum number of connections considered before a
decision can be made. Ideally, varying these constants will have little to no effect
on our results. In this appendix, we will demonstrate how varying our constants
affects our results.

B.1 Sensitivity to Threshold Selection

Our first set of constants are the lower and upper threshold bounds for each of
our metrics. We have set our threshold values fairly permissive, allowing a large
range of values to trigger a metric. In this section we explore how the lower
bound thresholds affect the distinguishing ability of metrics MPC and MBC.
We do not consider metric MUA in this discussion due to the lack of good
ground truth in determining false positives.

We expect that there is no single cutoff point for each metric at which the
metric performs ideally. There are two separate reasons a single cutoff point is
problematic.

First, our methods are designed to detect a variety of types of peers. The
variety of behaviors leads to a variety of metric values. For example, a BitTorrent
peer joining a peer group with a high rate of churn will have a much higher
value for MPC than a Gnutella leaf peer performing a search in which only a
few sources are non-responsive.

Second, P2P behaviors at a host may be somewhat masked by other on-
going activities at a host. If a user is surfing the content on several reliable web
servers while running a P2P peer, the successful HTTP connections will lower
the value of MPC. Similarly, if a user follows several bad links to web servers
which are down, the failed connections to these servers will raise the value of
MPC independently from the host’s P2P activity.

As shown in Figure 4(a), metric MPC is a relatively strong distinguisher
after a lower bound cutoff of 0.2. This is not true for metric MBC as seen in



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  20  40  60  80  100  120  140  160

P
os

iti
ve

 R
at

e 
(P

os
iti

ve
s/

T
ot

al
)

Number of Min Connections

False Positives, 2006
True Positives, 2006

(a) Varying Minimum Connections

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35  40  45  50

P
os

iti
ve

 R
at

e 
(P

os
iti

ve
s/

T
ot

al
)

Window Size in Minutes

False Positives, 2006
True Positives, 2006

(b) Varying Sliding Window Size

Fig. 5. Effects of Chosen Constants

Figure 4(b). This is partly because there are many non-P2P activities which can
trigger MBC including other user-to-user programs or a mix of server and client
activities.

As shown in section 5.2, it is the combination of metrics which reduces the
false positive rate. Combining MPC with MBC reduces the false positive rate
8–26%.

B.2 Sensitivity to Window Size

Our approach computes metrics based on connections in a sliding time window.
During our evaluation of our method we set our sliding time window size to be
20 minutes.

We expect that our results are not directly dependent on the size of the
sliding window since our metrics are updated per flow and not computed over the
entire time window. However, too large of a time window may cause undesirable
merging of two distinct dynamic hosts which during the window share a single
IP. To minimize the potential problem of dynamic hosts, we do not examine
window sizes greater than 50 minutes.

To confirm the independence of our detection ability on our sliding window
size, we examined window sizes from 1 to 50 minutes, varying the window size
by 5 minutes at a time. Figure 5(b) shows the effect of the window size the true
positive rate and false negative rate.

As expected, there is no significant increase in the false positives at any
specific window size. There is, however, a very slight decline in the true positive
rate as the window size increases. This is due mostly to MsPC not triggering
because activities at a host earlier during the time window “wash out” bursts of
failed connections which occur later in the time window.

B.3 Detection Sensitivity to Minimum Connections Threshold

As with our sliding window size, the minimum number of connections we consider
before attempting to make a decision is a fixed number. We wish to show that



our choice of requiring at least 10 connections before a decision is made reduces
the false postive rate without significantly reducing the true postive rate.

We expect that there is a range of threshold values for the minimum number
of connections considered for which the results are roughly the same; however,
at some point the minimum number of connections considered does greatly af-
fect the results. If too few connections are considered, the likelihood of a host
being falsely identified as P2P is expected to increase since metrics can be eas-
ily triggered over a small number of connections. If too many connections are
considered, metrics are likely to be “washed out” by other activities at the host.

We examined from 5–150 minimum connections. Figure 5(a) summarizes the
effect of minimum connections considered on the false positive rate and true posi-
tive rate. There is a slight increase in false positives at fewer than 10 connections,
which is consistent with our expectations.

The true positive rate drops steadily above 20 connections and significantly
above 100 connections. Partly, the drop in true positives is due to metrics being
diluted by non-P2P activities at the host as more and more connections are
considered in the decision. The overall steady decline in true positives is due
to peers never making the required minimum connections. Requiring too many
connections before a decision is made excludes peers which are relatively idle
and never make the minimum number of connections during the time window.

Setting our minimum connection threshold to 10 avoids eliminating relatively
idle peers while still reducing the false positives seen when too few connections
are considered.


