
Virtual InterNetwork Testbed: Status and Research Agenda

�

Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall,

Sally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,

John Heidemann, Polly Huang, Satish Kumar, Steven McCanne,

Reza Rejaie, Puneet Sharma, Scott Shenker, Kannan Varadhan,

Haobo Yu, Ya Xu, Daniel Zappala

USC Computer Science Department Technical Report 98-678

July 17, 1998

Abstract

Simulation is an important tool in network proto-

col development, providing an e�ective way to per-

form controlled experiments, consider alternative de-

signs, understand protocol interactions, and examine

scales and topologies that are di�cult to create in

the laboratory. However, the scale and heterogene-

ity of today's networks create challenges for network

simulation. In particular, con�guring simulation in-

puts, properly modeling the myriad of interacting

protocols, and processing and visualizing simulation

output is becoming increasing di�cult. The VINT

project is developing a set of tools centered around ns

simulator and nam network animator to meet these

challenges. This paper describes the current status

and future directions of this ongoing work.

1 Introduction

The rapid di�usion of internetworking technology

brings two major sources of stress to the underly-

ing protocol mechanisms and associated design meth-

ods: scale and heterogeneity. Scale must be consid-

�

This research is supported by the Defense Advanced Re-

search Projects Agency (DARPA) through the VINT project

at LBL under DARPA order E243, at USC/ISI under DARPA

grant ABT63-96-C-0054, at Xerox PARC under DARPA grant

DABT63-96-C-0105.

ered in evaluating both the correctness and perfor-

mance of wide area internet protocols at every level

(from routing, to transport and application proto-

cols). Heterogeneity of applications translates into

a larger number of interacting protocols, service re-

quirements, and tra�c patterns.

Simulation is a valuable tool in designing and eval-

uating protocols for large heterogeneous networks.

It allows repeatable and controlled experimentation

while avoiding the cost and complexity of network

testbeds. The VINT (Virtual InterNetwork Testbed)

project is developing the simulation tools and sup-

porting infrastructure to address the problems of

scale and heterogeneity across a range of networking

protocols and studies.

The software platform for our e�orts is ns , a dis-

crete event simulator composed of a C

++

core, an

object-oriented extension to the Tcl scripting lan-

guage called OTcl, and a growing framework of net-

working protocols and building blocks. Upon this

base we are developing the following techniques and

tools to enable systematic studies of network protocol

performance as scale and protocol interactions grow.

Libraries of network protocols Ns provides a

rich set of protocols with which to build simu-

lations. Due to its object framework, customiza-

tion of the existing protocols and addition of new

protocols is straightforward. The framework en-

1



courages extension and modi�cation by users to

promote investigation of variants to existing pro-

tocols and testing of new alternatives.

Libraries of topologies and tra�c generators

The load mix of the Internet is shifting rapidly

(now to WWW, and expanding to audio and

video), and the topology has always been in


ux; it is important to provide researchers with

the ability to explore the implications of these

topology and load shifts. We are developing a

library of network topologies and tra�c gener-

ators for ns to facilitate protocol performance

testing over a wide range of conditions. This

common library of simulation environments

will also allow better comparison between

di�erent simulations, easing the veri�cation of

the simulation results.

Abstraction techniques and tools It is hard to

identify the relevant phenomena buried within

the mountain of data generated by a detailed

network simulation. Furthermore, resource lim-

itations often constrain the number of network

objects (i.e., nodes and links) that can be sim-

ulated. A crucial aspect of making simulations

both practical and valuable is to provide the abil-

ity to vary the level of abstraction, in both the

analysis of the data and in the simulation itself.

Abstraction techniques will allow users to iden-

tify relevant phenomena using high-level simula-

tions and then use detailed simulations to study

the phenomena more extensively. Key to this

approach is cross-validation of detailed and high-

level simulations.

Visualization techniques Many relevant network

phenomena remain invisible when only aggregate

statistics are collected. Visualization techniques

are crucial in enabling users to identify \inter-

esting" aspects of the simulation. The visualiza-

tion tools we are developing have proven to be

extremely useful for debugging simulations and

understanding protocol behavior, as well as for

helping users frame their design questions.

Emulation interface Ns includes an emulation in-

terface which provides a gateway between real-

world network nodes and the simulator. Emula-

tion enables a running simulator to send packets

to, and receive packets from, operational net-

work hosts and routers. This allows more thor-

ough testing of implementations prior to deploy-

ment, and will allow simulations to be driven by

more accurate network inputs.

The purpose of this paper is twofold. First, we

want to describe the kinds of problems network re-

searchers use simulation to study, and in doing so,

demonstrate some of the functionality in ns. Second,

we want to present the techniques we are developing

to address the challenges of using simulation to study

these algorithms and protocols in large heterogeneous

networks.

We begin with an overview of the motivations and

design decisions resulting in the current software ar-

chitecture of the simulation environment. We then

proceed to illustrate a wide range of network research

areas in which investigators have employed ns in pro-

ducing important research results. We touch upon

scenario generation, scaling, and visualization, each

active areas of development. We conclude with a brief

discussion of prior work in network simulation and

challenges for the future.

2 Composable simulation

framework

The fundamental abstraction provided by the ns soft-

ware architecture is \programmable composability".

In this model, simulation con�gurations are expressed

as a program rather than as a static con�guration

or through a schematic capture system. A simula-

tion program composes objects dynamically into arbi-

trary con�gurations to e�ect a simulation con�gura-

tion. By adopting a full 
edged programming model

for simulation con�guration, the experimentalist is

free to extend the simulator with new primitives or

\program in" dynamic simulation \event handlers"

that interact with a running simulation to change its

course as desired.

Rather than adopt a single programming language

that de�nes a monolithic simulation environment, we

2



have found that di�erent simulation functions require

di�erent programming models to provide adequate


exibility without unduly constraining performance.

In particular, tasks like low-level event processing or

packet forwarding through a simulated router require

high performance and are modi�ed infrequently once

put into place. Thus, they are best served by an im-

plementation expressed in a compiled language like

C

++

. On the other hand, tasks like the dynamic

con�guration of protocol objects and the speci�cation

and placement of tra�c sources are often iteratively

re�ned and undergo frequent change as the research

task unfolds. Thus, they are best served by an im-

plementation in a 
exible and interactive scripting

language like Tcl [60].

To this end, ns exploits a split programming model,

where the simulation kernel|i.e., the core set of high-

performance simulation primitives|is implemented

in a compiled language (C

++

) while simulations are

de�ned, con�gured, and controlled by writing an \ns

simulation program" expressed in the Tcl scripting

language. This approach is a boon to long-term pro-

ductivity because it cleanly separates the burden of

simulator design, maintenance, extension, and debug-

ging from the goal of simulation itself|the actual

research experiments|by providing the simulation

programmer with an easy to use, recon�gurable, and

programmable simulation environment. Moreover, it

encourages a programming style that leads to an im-

portant separation of mechanism and policy: core

objects that represent simple and pure operations are

free of built-in control policies and semantics and can

thus be easily reused.

In our split programming model, �ne-grained sim-

ulation objects are implemented in C

++

and are

combined with Tcl scripts to e�ect more powerful,

higher-level \macro-objects". For example, a simu-

lated router is composed of demultiplexers, queues,

packet schedulers, and so forth. By implementing

each primitive in C

++

and composing them using

Tcl a range of routers can be simulated faithfully.

We can string together the low-level demultiplexers,

queues, and schedulers to model an IP router per-

haps with multicast forwarding support, or instead

arrange them into a con�guration that models a high

speed switch with a new scheduling discipline. In the

latter case, the switch could be easily extended with

protocol agents (implemented entirely in Tcl) that

modeled an experimental signaling protocol. Per-

formance also guides our split programming model.

Low-level event-level operations like route lookups,

packet forwarding, and TCP protocol processing are

implemented in C

++

, while high-level control opera-

tions like aggregate statistics collection, modeling of

link failures, route changes, and low-rate control pro-

tocols are implemented in Tcl. Careful design is nec-

essary to obtain a desirable trade-o� between perfor-

mance and 
exibility, and the division often migrates

during the course of a protocol investigation.

This composable macro-object model is naturally

expressed using object-oriented design, but unfortu-

nately, at the time we designed ns, Tcl did not pro-

vide support for object-oriented programming con-

structs nor did it provide very e�ective programming

constructs for building reusable modules. Thus, we

adopted an object-oriented extension of Tcl. Of the

several Tcl object extensions available at the time, we

chose the Object Tcl (OTcl) system from MIT [77]

because it required no changes to the Tcl core and

had a particularly elegant yet simple design. We fur-

ther adopted a simple extension to OTcl called TclCL

(for Tcl with classes) that provides object sca�old-

ing between C

++

and OTcl and thereby allows an

object's implementation to be split across the two

languages in congruence with our split programming

model [57].

With the OTcl programming model in place, each

macro-object becomes an OTcl class and its com-

plexity is hidden behind a simple-to-use set of object

methods. Moreover, macro-objects can be embedded

within other macro-objects, leading to a hierarchical

architecture that supports multiple levels of abstrac-

tion. As an example, high-level objects might repre-

sent an entire network topology and set of workloads,

while the low-level objects represent components like

demultiplexers and queues. As a result, the simula-

tion designer is free to operate at a high level (e.g.,

by simply creating and con�guring existing macro-

objects) at a middle level (e.g., by modifying the be-

havior of an existing macro-object in a derived sub-

class) or at a low level of abstraction (e.g., by intro-

ducing new macro-objects or split objects into the ns

3



core). Finally, class hierarchies allow users to spe-

cialize implementations at any one of these levels, for

example extending a \vanilla TCP" class to imple-

ment \TCP Reno". The net e�ect is that simulation

users can implement their simulation at the highest

level of abstraction that supports the level of 
exi-

bility required, thus minimizing exposure to and the

burden associated with unnecessary details.

3 Protocol Design and

Interaction

The ns simulator has a large population of users, and

it and its ancestors have been used in many successful

research e�orts.

1

In this section, we review four areas

of research activity that have used ns and describe

existing functionality of the simulator. These areas

include TCP congestion control, queue management,

multicast routing, and reliable multicast transport.

This is merely a sample of research using ns and is by

no means an exhaustive list. In addition, we describe

a recently developed emulation interface in ns.

3.1 TCP Congestion Control

The ns simulator and its ancestors have been used

to study a number of algorithmic changes to the

TCP protocol. Investigations of TCP error and con-

gestion control algorithms have led to the develop-

ment of several new algorithms for TCP including

selective acknowledgments [30, 54], forward acknowl-

edgments [53], and explicit congestion noti�cation

(ECN) [32]. Simulation studies using ns reveal how

common TCP algorithms perform poorly when sub-

jected to moderate to heavy packet loss, and how al-

gorithms in end nodes such as \New Reno" and selec-

tive repeat can help to improve behavior signi�cantly

under such conditions. In addition, TCP can also

be modi�ed to avoid packet \bursts". Such bursts,

which can have harmful e�ects on the network, often

result after the successful reconstruction of the data

stream following a series of packet losses [73] or after

1

Ns is derived from REAL [46], which is derived from

NEST [23]. The current version of ns (version 2) is available

at http://www-mash.cs.berkeley.edu/ns.

idle connections [74]. The availability of a public-

domain simulator including several variants of TCP

greatly facilitates the evaluation of proposed protocol

enhancements.

3.2 Queue Management and

Scheduling Policies

Ns has also been used to study router-based algo-

rithms. Random Early Detection (RED) queue man-

agement [34], which was developed on one of the an-

cestors to ns, is supported as a standard queue man-

agement technique in ns. RED queue management

reacts to congestion prior to overload. RED has been

shown to achieve signi�cant improvements over tradi-

tional FIFO (\drop-tail") queue management strate-

gies by allowing for some bursty behavior but also

providing implicit signaling to well-behaved network


ows prior to bu�er exhaustion. In addition, its ran-

dom approach helps to avoid undesirable phase e�ects

(i.e., throughput bias for particular connections) in

networks of drop-tail queues [33].

Other investigations into router tra�c manage-

ment employing the ns simulator include Class Based

Queueing (CBQ) [35], a technique in which packets

are treated as members of \classes". Classes are as-

signed a maximum bandwidth allocation and prior-

ity level relative to other classes. The CBQ scheduler

limits classes to their assigned bandwidth unless some

other classes are using less than their allocated band-

width, in which case \bandwidth borrowing" may be

allowed.

In each of these cases, simulations provided a con-

venient, repeatable environment in which to study

and compare algorithms. Furthermore, the existence

of a platform with which to study these new algo-

rithms has facilitated a much wider understanding of

their behavior, thereby lowering barriers to deploy-

ment in operational networks.

Finally, it should be noted that alternative queue

management and scheduling policies are useful for

other kinds of simulation studies as well. For ex-

ample, ns was used in a study of the e�ects of service

priority on the performance experienced by adaptive

audio applications [6]. A comparison of uniform and

priority dropping mechanisms on the performance of

4



layered video also used ns extensively [7]. In both

these cases, while the scheduling and dropping algo-

rithms were themselves not the focus of the study,

they were a critical part of the infrastructure needed

to carry out the simulation experiments.

3.3 Multicast routing

More recently, ns has been used in the study of mul-

ticast routing protocols. Several multicast routing

protocols, which establish distribution trees for de-

livering datagrams from a single sender to all the

members of a multicast group, have been proposed

for the Internet. These protocols can be classi�ed

as either broadcast-and-prune or explicit join proto-

cols. In the former, which include DVMRP [69] and

PIM-DM [25], a multicast packet is transmitted to all

leaf subnetworks in a distribution tree rooted a the

source. Leaf subnetworks with no local members of

the group send prune messages towards the source of

the packet. This prevents future packets from being

transmitted to these subnetworks and limits packet

distribution to those subnetworks with group mem-

bers. In contrast, in explicit join protocols, such as

CBT [8] or PIM-SM [26, 27], routers send hop-by-hop

join messages for the groups for which they have lo-

cal members. These control messages build forward-

ing state in routers and are sent upstream towards

the source to establish a distribution tree. Ns cur-

rently has implementations of both broadcast-and-

prune (based on PIM-DM) and explicit join (based

on PIM-SM) protocols.

These protocols provide an example of the bene-

�ts of the split programming model described in Sec-

tion 2. Low-level mechanisms for forwarding mul-

ticast packets, common to all multicast protocols,

are implemented in C

++

, while the routing protocols

themselves are implemented in OTcl. This allows

rapid design and experimentation with the routing

protocol implementation with minimal performance

degradation, as only control messages are subjected

to the higher overhead of the interpreted language.

The above-mentioned protocols provide internet-

work forwarding of multicast packets. Multicast is

also used in LAN environments to exchange rout-

ing updates and control messages, or to bootstrap

protocol mechanisms [28]. Ns has been extended

to support multiaccess links connecting more than

two nodes. Facilities to support packet tracing (for

o�-line analysis) and selective loss have been imple-

mented. Other than packet replication and forward-

ing, all the support for LAN multicast was done in

OTcl to provide 
exibility. This facility has been used

to study multicast routing protocol robustness in the

presence of control-packet loss and node failure. In

particular, this work identi�ed several pathological

cases in PIM-SM and led to corresponding �xes to

the protocol speci�cation.

The existence of multicast routing protocols in ns

is not just of value to researchers interested in the de-

sign and evaluation of such protocols. Rather, other

experimenters depend on multicast as necessary in-

frastructure for their simulations. We next discuss

examples of such simulations.

3.4 Multicast Transport

Aspects of the many-to-many communication

paradigm of multicast forwarding complicate the

design of transport protocols. These include the

anonymity of membership, membership dynamics,

and the heterogeneity of the members. Ns, through

infrastructure consisting of many di�erent link and

network layers, as well as unicast and multicast

routing protocols, provides a unique environment

to develop multicast transport protocols. In this

section, we describe some of the work on reliable

transport, congestion control, and application

development in which simulation has been used.

Reliable Transport Scalable Reliable Multicast

(SRM) [31] was designed originally for real-time

whiteboard applications. It uses a NACK-based pro-

tocol to achieve reliability. Receivers detecting a loss

multicast a negative acknowledgement to the group.

These negative acknowledgements are multicast in

order to suppress duplicates. In addition, receivers

delay their negative acknowledgements for a random

time to avoid inundating the network with synchro-

nized requests and retransmissions. While the orig-

inal simulations of SRM were done in a stand-alone

simulation tool, an SRM implementation has been

5



added to ns. This is valuable to other researchers

investigating reliable multicast transport. For ex-

ample, Routing Policy Multicast (RPM) [38] is an

application-speci�c, SRM-like protocol for the reli-

able delivery of routing policy objects. These objects

are large but there is less of a time constraint on de-

livery than with SRM. Given the common mechanism

shared between SRM and RPM, RPM was easily im-

plemented by deriving a new class in the ns object

framework. This implementation was used to eval-

uate rapidly di�erent timer mechanisms, and deter-

mine the optimal parameter settings for RPM.

The periodic session messages in SRM lead to

bandwidth overhead that impacts protocol scalability

when the group membership is large. Scalable Ses-

sion Messages (SSM) [72] algorithms use hierarchy

mechanisms to reduce this overhead. ns was used to

investigate the di�erent mechanisms by which rep-

resentatives are chosen, and to quantify the scaling

bene�ts that can be achieved and the impact on the

protocol's loss detection and recovery mechanisms.

As stated above, the existence of a public-domain

simulator with an extensive set of protocol modules

facilitates comparison of research results. As an ex-

ample, H�anle [40] used ns to compared the Multi-

cast File Transfer Protocol (MFTP) [68], a proto-

col speci�cally designed for bulk data transfer, to

SRM under di�erent network conditions in a variety

of di�erent topologies. By subjecting the protocols

to identical test conditions, their behavior could be

compared across a range of conditions.

Congestion Control Multicast congestion control

is an active area of investigation. The challenge is to

manage the feedback from a large set of homogeneous

receivers in a timely and scalable manner. Receiver-

driven Layered Multicast (RLM) [56] is an example

of a multicast congestion control protocol for layered

video transmission. Much of the design of RLM used

ns; join-experiment heuristics, congestion measure-

ments, and other features were prototyped through

OTcl scripting.

DeLucia [18] proposed a representative based con-

gestion control algorithm for multicast bulk data

transfer applications. ns was used to verify correct

behavior in the face of congestion, and evaluate the

performance of the protocol in the presence of com-

peting tra�c in the network. Work is now focused on

applying the congestion control schemes to Multicast

Dissemination Protocol (MDP) [16]. This has been

accomplished by retro�tting an existing implementa-

tion of MDP into ns, enabling study of the integrated

protocol and congestion control scheme in the simu-

lator.

Application Real-time Transport Protocol

(RTP) [39] is designed for unreliable, but timely

delivery of datagrams for real-time audio or video,

or other multimedia or real-time applications. ns

implements the control aspects of RTP (Real-time

Transport Control Protocol|RTCP) in OTcl. The

implementation is useful for further experimenta-

tion in the development of other transport and

application protocols.

Reddy [65] proposed a multicast-based application

of a network of dynamically adaptive measurement

servers to gather localized information about the net-

work. ns is being used in the design of the protocol,

to determine the scope of each measurement server

so that every node or link is monitored by a server,

and to make the algorithm robust in the face of the

addition, deletion and failure of servers.

McCanne et al [55] are using ns to investigate the

minimal set of mechanisms that a router could imple-

ment to simplify the design and improve the perfor-

mance of multicast transport protocols. One exam-

ple of this is sub-tree multicast (or \subcast"), where

the retransmit of a lost data packet is only sent to

the subtree that experiences the loss.

Sidebar: Dynamics

Ns supports the study of network dynamics. That is,

how are protocols a�ected by links and nodes that fail

and recover? This support includes dynamic routing

protocols and models of link failures. Study of net-

work dynamics is important to characterize the be-

havior of end-to-end protocols in the context of a va-

riety of network anomalies, including route 
apping,

routing loops and network partitions [62]. We have

6



used these approaches to study TCP and multicast

transport protocols [73].

One e�ect of topology change is the reordering of

packets in transit. Such interleaving of acknowledge-

ments or data packets can have harmful consequences

for a TCP session and the network. In particular,

the sender can see a sudden and large increase in the

amount of acknowledged data. The sender responds

by opening its send window, and sends a large burst

of packets back to back. The resulting congestion

reduces the throughput for the session. We have ob-

served these e�ects through simulation studies using

ns; it remains to future work to recreate the e�ect of

packet interleaving in an operational network.

Topology change has even greater impact on mul-

ticast transport protocols. Our analysis of the timer

mechanisms in SRM revealed the need for accurate

and timely distance estimation by the group mem-

bers; collecting such estimates in the face of dynami-

cally changing topology is problematic. We also iden-

ti�ed some undesirable operating regions of the pro-

tocol. Such characterizations are useful both in the

design and evaluation of the protocol, and in enhanc-

ing its manageability when deployed in operational

networks.

The experience gained studying TCP and charac-

terizing the behavior of SRM during topology change

has contributed to an evolving systematic methodol-

ogy for the study of a protocol behavior under a range

of network conditions including packet loss, routing

transients, and node and link failure.

3.5 Emulation

Ns supports an emulation facility, allowing simula-

tions to interact with actual network tra�c. In com-

bination with the simulator's tracing and visualiza-

tion facilities, emulation provides a powerful analysis

tool for evaluating the dynamic behavior of protocols

and their implementations in end systems. An emula-

tion scenario is constructed by placing the simulator

as an intermediate node (or end node) along an end-

to-end network path, as illustrated in Figure 1. The

simulator contains a simulated network, and passes

live network tra�c through the simulation, subject-

ing it to the dynamics of the simulated network. The

Packet Flows

Packet Capture and Generation Interface

Local Operating System

NS Simulator

(Emulation Mode)

Simulated Network

Figure 1: Emulation: live network tra�c passes

through simulated topology and cross-tra�c.

simulator's scheduler is synchronized with real-time,

allowing the simulated network to emulate its real-

world equivalent so long as the simulated network

can keep pace with the real world events.

Emulation is useful beyond conventional simula-

tion in evaluating both end system and network ele-

ment behavior. With emulation, end system protocol

implementations can be subjected to packet dynam-

ics (e.g. drops, re-ordering, delays) that are di�cult

to reproduce reliably in a live network. Furthermore,

by capturing tra�c traces of live tra�c injected into

the simulation environment, visualization tools may

be employed to evaluate the end system's dynamic re-

sponses. In the converse situation, network element

behavior (e.g., a queueing or packet scheduling disci-

pline) may be evaluated in relation to live tra�c gen-

erated by real-world end stations. Such simulations

are useful in predicting undesirable network element

behavior prior to deployment in live networks.

The ns emulation facility is currently under de-

velopment, but an experimental version has already

proven useful in diagnosing errors in protocol imple-

mentation. For example, researchers at UC Berke-

ley have developed a shared white board application

using a version of the SRM protocol supported in

the MASH toolkit [57]. The simulator is placed be-

tween groups of live end stations communicating us-

ing SRM. Multicast tra�c passing between groups

7



must traverse the simulator, and is subject to the

dynamics of its simulated network. Visualization of

traces taken within the simulation environment re-

veals end station retransmissions triggered by pack-

ets dropped or delayed within the simulated network.

This helps to pinpoint time-dependent behaviors of

adaptive protocols which are very di�cult to diag-

nose otherwise.

3.6 Other examples

Although we have focused primarily on the study

of transport- and router-level network issues, ns has

been used for studies of other network layers and

problems. For example, Faber uses ns to examine ac-

tive approaches to congestion control [29]. Portions of

ns also have been used to study multicast address al-

location [48], new rate based congestion control algo-

rithms [66], and self-organizing clustering algorithms

applied to network monitoring and reliable multicast

session message aggregation.

4 Scenario generation

In general, a simulation scenario is de�ned by the

components and parameters that comprise the simu-

lation. In ns, scenarios are represented by simulation

scripts which describe the network topology, includ-

ing the physical interconnects between nodes and the

static characteristics of links and nodes; tra�c models

for both unicast and multicast senders; and test gen-

eration, which creates events such as multicast group

distribution (receivers joining and leaving) and net-

work dynamics (node and link failures) designed to

stress test an implementation.

4.1 Topology

The topology for a simulation is speci�ed as part

of the simulation script. For small simulations, the

user will usually specify the topology \by hand".

For larger topologies, generating topologies manually

is less practical. Hence, topology generation tools,

which create topologies according to a set of user

speci�ed parameters, are often used. Our goal here is

to provide users with a library of topology generation

tools to use with ns. In addition, we are accumulating

a library of sample topologies for use in simulations.

Rather than recreate previous work, we have chosen

to leverage the work of others on automatic topology

generation. For the two topology generation tools

described below, we have written and made available

conversion programs that allow the generated topolo-

gies to be used in ns simulations.

The Georgia Tech Internetwork Topology Models

(GT-ITM) software package [12, 13, 79] can create


at random networks using a variety of edge distri-

bution models, including pure random, exponential,

locality, several variations of Waxman's model [75]

and the Doar-Leslie model [22]. Given the size of a

grid and the number of nodes desired, GT-ITM ran-

domly places nodes on the grid and connects them

according to the probability given by the edge model.

The GT-ITM software package can also create dif-

ferent types of hierarchical networks. It can create

a multi-level hierarchy by �rst creating the top-level

network (using one of the 
at random models) and

then recursively replacing each node in the current

level with a connected graph. Edges between lev-

els are resolved by randomly selecting a node within

each replacement graph. GT-ITM can also create

transit-stub hierarchies like those found in the Inter-

net. Parameters control the average number of tran-

sit domains, the average number of stubs per transit,

and the average size of transit and stub domains.

Doar has written tiers [21, 13, 20] to create three-

level hierarchical topologies similar to the transit-

stub GT-ITM topologies. In tiers, the three lev-

els correspond to wide-area, metropolitan-area, and

local-area networks. A network at any level is cre-

ated by randomly placing nodes within a grid and

then connecting them with a minimum spanning tree.

Edges between levels are created by attaching a child

network to a parent network, for example by attach-

ing a local-area network to a metropolitan-area net-

work. Topology generation is controlled by specifying

the number and size of networks at each level, plus

the connectivity between levels.

The key challenge in topology generation is com-

ing up with topologies that embody relevant charac-

teristics of real networks. Once this is done, the ns

8



framework easily allows simulation of any topology

that is generated. We have developed an API to the

GT-ITM 
at random and transit-stub topologies. Ns

simulation scripts are automatically created by a sim-

ple format conversion program. We plan to extend

the API for other types of topologies and topology

generation packages. Similarly, actual maps of (parts

of) the Internet topology can also be used as simula-

tion input.

4.2 Tra�c Models

Ns provides a wide variety of source models, all of

which are con�gurable in Tcl allowing 
exible cre-

ation and parameterization. For simulations of TCP,

both bulk data and interactive sources are available.

The former can model an FTP application while the

latter, based in part on a model developed from traf-

�c traces [17], models Telnet-like applications. To

simulate web tra�c, a tra�c generator based on the

model described in [51] has also been implemented in

ns. Other source models are available for non-
ow

controlled applications. These include a constant bit

rate source, on-o� sources using either exponential

or Pareto distribution (the latter useful in generating

self-similar tra�c [49, 63]), and a source that gener-

ates tra�c from a trace �le. The composable frame-

work of ns makes adding new tra�c models easy, and

allows construction of compound models out of the

individual ones. For example, in simulations of RLM

a multi-layered video source was created by combin-

ing several CBR streams [56]. A similar approach was

used to incorporate correlations of burstiness across

layers in another study involving layered video [7].

Ns provides an extensive set of models for indi-

vidual tra�c sources. However, in creating a sim-

ulation scenario, a network researcher is often more

interested in background tra�c with desired charac-

teristics (i.e., aggregate bandwidth, burstiness, self-

similarity, etc.). Recently, we have developed an API

to help users easily create random background traf-

�c with various characteristics (unicast or multicast

and with various distributions). We are continuing

to develop this API.

4.3 Test Generation

Choosing an appropriate set of test conditions for a

simulation experiment is often straightforward. For

example, the performance of an algorithm such as

RED can be evaluated by using a reasonable set of

parameter values as inputs to the simulation. Eval-

uating the correctness of a protocol, on the other,

can be a much more daunting task. We devel-

oped a framework for Systematic Testing of Protocol

Robustness by Evaluation of Synthesized Scenarios

(STRESS) [42, 44] in order to reduce the e�ort

needed to identify pathological cases of protocol be-

havior. As the name implies, this framework inte-

grates systematic synthesis of test scenarios with the

VINT simulation environment of ns. We are in the

process of developing automatic test generation al-

gorithms for multicast protocols. Currently, we are

comparing three methods for testing multicast rout-

ing robustness in the presence of selective message

loss on a LAN. We call these methods: a) heuristic

test generation (HTG), b) fault-independent test gen-

eration (FITG), and c) fault-oriented test generation

(FOTG).

HTG uses domain-speci�c heuristics and topologi-

cal equivalence relations to limit the number of sim-

ulated scenarios. Simulation of these scenarios in ns

is then conducted to explore the behavior of the pro-

tocol in the presence of message loss. This method

does not require a formal model of the protocol.

In contrast, FITG and FOTG process a �nite state

machine model of the protocol. Using a forward

search technique, the FITG method investigates an

equivalent subset of the protocol state space for a

given topology to generate the scenario events lead-

ing to erroneous behavior. FOTG starts from the

target message and synthesizes a topology necessary

to trigger and be a�ected by this message. Then,

using a backward search technique, it generates sce-

nario events leading to protocol error.

These methods were applied to multicast routing

protocol studies in ns. Several design errors were dis-

covered and corrected with the aid of STRESS; the

detailed results are presented in [42, 44, 43].

Future work in this area will consider the e�ect

of a wider range of of network failures on multicast

9



routing. We will also investigate systematic methods

for performance evaluation and sensitivity analysis of

end-to-end protocols, such as multicast transport.

In addition, we plan to use the emulation interface

in ns to conduct systematic conformance testing and

performance pro�ling of actual protocol implementa-

tions.

5 Scaling and Simulation

Abstraction

Ns has shown its utility in a number of research

projects (some of which were described in Section 3).

Extending this success to other research problems re-

quires the simulator to scale to thousands of nodes

and links, far beyond ns's original design goals. Cus-

tom simulators built for a given problem can tailor

simulation abstraction to the problem at hand, but

often omit many of the services present in a general

purpose simulator like ns (for example, tracing and

debugging support and existing loss, tra�c models,

and dynamic topologies). More importantly, it is of-

ten di�cult to validate these simulators against more

detailed simulations and reality. In ns, we are work-

ing on approaches which allow simulations to abstract

away unnecessary details while still using general ser-

vices [45]. By supporting an adjustable level of ab-

straction we will allow users to select abstract models

when needed, but also focus in on the details to in-

vestigate interesting phenomena.

We are taking two complementary approaches to

scaling ns: carefully tuning the implementation, and

allowing the user to abstract out details unnecessary

for some simulations. The former improves the e�-

ciency of the simulator without changing the simu-

lation abstraction. The latter changes aspects of the

simulated model to achieve performance gains. As an

example implementation improvement we have made

changes to our binding mechanism between C++ and

Tcl to improve memory consumption when there are

large numbers of shared objects. Use of centralized

route computation is an example abstraction. Al-

though it produces slightly di�erent transient behav-

ior, for many simulations these details are unimpor-

tant while savings in time and memory is [45]. These

approaches often interplay, for example our session-

level simulator abstracts away cross-tra�c network

interference and uses a very lightweight node and link

representation (an implementation change).

The cost of abstraction is simulation accuracy. The

degree to which accuracy is sacri�ced, and the im-

pact of this sacri�ce on the validity of the results

varies greatly from model to model. For example,

while the details of a particular media's approach to

segmentation and reassembly are important for LAN

simulations, they can be re
ected adequately in the

link's packet loss loss rate for higher-level WAN simu-

lations. An analysis of how abstractions change sim-

ulation results accompanies our development of new

abstractions. An analysis of SRM performance across

detailed and session-level simulations suggests that

while individual SRM events do vary, average aggre-

gate behavior changes by only a few percent in the

cases we examined [45].

Abstraction techniques that improve ns's ability

to run large simulations is an area of ongoing e�ort.

Particularly promising among the techniques we are

pursuing is two-phase topology generation, in which

a large topology is generated and populated with a

few agents, and then replaced with a more abstract

but equivalent topology through node aggregation.

We are also developing hybrid abstractions where one

part of the simulator runs in detailed mode and an-

other uses session-level mode or some other appropri-

ate abstraction.

2

In addition to enabling large simulations, data

analysis in large simulations is an important issue.

Hierarchical visualization tools are needed for large

networks.

Sidebar: What is Scaling?

In the abstract, scaling a simulator is running bigger

simulations. But simulations have many dimensions

of \big": large numbers of nodes, links, senders and

receivers, multicast groups, multicast group mem-

bers, and packets-in-transit, as well as a large amount

2

It should be noted that parallel simulation on large mul-

tiprocessing hardware can provide a complementary technique

to abstraction when additional performance gains are needed.

10



of data collected. A simulator that supports 100 si-

multaneous TCP 
ows may work well with a 10Mb/s

LAN-style sending rate but may consume much more

memory when simulating 45Mb/s cross-country traf-

�c, since many more packets are concurrently in


ight.

Pushing these dimensions of scaling can tax a com-

puter's memory, CPU, and I/O resources. Although

we feared our use of Tcl might make CPU usage a

bottleneck, in our simulations we have found memory

to be the most frequent problem. It is understand-

ably di�cult for a single machine to keep track of

most of the network state for thousands of simulated

hosts.

To make matters worse, many researchers are cur-

rently investigating the properties of multicast pro-

tocols (both routing and reliable transport) when

there are large number of members per group. Mem-

ory required for these protocols grows O(n

2

) as the

number of group participants increases, so a detailed

simulation of very large groups is often impossible.

Our session-level abstraction for multicast abstracts

away the details of cross-tra�c interference, allow-

ing a much more compact link and node represen-

tation. This allowed simulations of twice as many

group members with the same amount of memory

(Figure 2).

6 Visualization

Usually, the output of ns is a trace �le consisting of

packet events and parameters. These data are di�-

cult to interpret by direct inspection, so graphs and

aggregate statistics are often employed (for example,

time/sequence number plots common in TCP stud-

ies). While these approaches are helpful, they can

miss interesting details of the simulation.

Visualization has been found to be extremely pow-

erful in helping understand characteristics of large

complex data sets. The VINT project is exploring

this technique through nam (the network animator).

Like ns, nam is built with a C

++

core and support

of OTcl/Tk, which allows nam to be extensible and

easily customized. Using trace �les generated by ns,

nam provides animation, inspection, and synchro-

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
em

or
y 

us
ag

e 
(in

 M
B

)

number of group members

detailed

session

Figure 2: Session-level abstraction allows substan-

tially larger numbers of multicast group members in

the same amount of memory.

nized view-based, drill-down analysis of the traces.

Animation The animation tool displays the net-

work topology, animates packet transmission across

links and displays node and link dynamics. The unit

of animation is the event, which is read from the

trace �le. In general, there are four types of events.

Nodes and links de�ne the topology of the simula-

tion. Packet-related events denote packets leaving

or reaching a node, entering or leaving a queue, and

being dropped. Protocol-related events describe the

position of protocol instances (agents) and their in-

ternal states (variables). Annotations serve as indices

to the trace �le for easier browsing.

Nam de�nes di�erent animation models for di�er-

ent events. Packets are displayed as �lled, colored

rectangles with a tapered end to indicate the direc-

tion they travel. Dropped packets are displayed as

rolling squares falling out of the window. Queues are

shown as stacked packets on a link. Nodes and links

can be shown with di�erent shapes and colors to high-

light simulation events. For example, link color can

indicate its status (up or down), or node color can

indicate membership in a multicast group. Agents

(data senders and receivers on a node) are displayed

11



Figure 3: Nam screen snapshot.

as small labeled rectangles attached to nodes. These

visual representations make it easy to inspect data

(see below).

Nam provides two ways to browse the traces. First,

a time slider is provided to start animation from any

point in the trace �le. Second, annotations are pro-

vided as indices to the trace �les. They are displayed

in the bottom pane in nam main window (Figure

3). Double clicking on any of them brings nam to

the time indicated by that annotation. Annotations

may be edited interactively during animation. Nam

provides VCR-like buttons (e.g., Play, Fast Forward,

Rewind, etc) to control the animation..

Sometimes it is useful to compare several anima-

tions side-by-side, for example, when one is studying

behaviors of the SRM protocol [31] with di�erent pa-

rameters in the same scenario. In order to support

this, several instances of nam running on the same

machine can control each others' animations. It is as-

sumed that only one nam instance will be in control

at one time, therefore no concurrency control mech-

anism is provided.

Inspection The animation tool only displays some

aspects of the simulation traces; much of the infor-

mation, such as packet headers or protocol state vari-

ables, in the traces cannot be shown directly by the

animation tool. For large data sets, it may be ben-

e�cial to have multiple views emphasizing di�erent

aspects of the data. The inspection tool and statis-

tics tool of nam are designed with this in mind.

When an interesting point is reached during an an-

imation, it is often desirable to examine certain data,

such as the source and destination of a packet, state

variables in an agent, and link parameters, in more

detail. The inspection tool provides two ways to do

this. First, clicking on any of the displayed objects,

e.g., packets and agents, will bring out a panel show-

ing additional information about that object. Sec-

ond, monitors can be used to continuously display

state about a link or a node. Monitors display and

update all available information about the object. All

monitors are displayed in a pane in nam's main win-

dow, as shown in Figure 3.

Nam provides multiple views of the same topology

12



(the lower smaller window in Figure 3), thus allowing

simultaneous animation and inspection of di�erent

parts of the topology. All views are zoomable for

inspection of details. They are useful for examining

in detail multiple objects in a large topology.

Synchronized view-based, drill-down analysis

Besides examining packet 
ows and node/link dy-

namics, we would also like to have high-level repre-

sentations (or \overviews") of the entire trace. For

example, when we are studying TCP's behavior, it is

useful to have TCP sequence number plots in addi-

tion to the animations. These views are synchronized

in time; time change in any view (e.g., by moving a

time slider or by clicking on an interesting event) will

change time in all views. The views also enable the

user to discover interesting and useful results by se-

lecting a subset of trace events, continuously zoom-

ing in for drill-down analysis. Each trace event is

displayed in the same way (i.e., color, shape, etc.)

across views to help the user coordinate events across

views.

Currently, two types of analysis views are sup-

ported. The �rst displays link-speci�c information.

Speci�cally, utilization and packet loss over time is

shown for the entire simulation (see the two bars

starting with an arrow in Figure 3). The second kind

of view is a high-level protocol analysis tool. Figure

3 shows a plotting and analysis tool for TCP. The

window in the upper right corner shows the number

of active TCP sessions in the simulation (two in this

case). The window below it shows both the sequence

number and acknowledgement number as a function

of time for the �rst tcp session. The lower left window

shows the same plots for the second tcp session. The

lower right window is a zoomed in view of a portion of

the �rst tcp connection. The vertical line inside each

view denotes current time in the animation. A mes-

sage view can be opened for each plot, for instance,

to show the sequence number of a particular packet

in the graph. Note that the same color is used for

the view of the �rst tcp session, its zoomed view, and

its packets in the animation. The tcp sequence plot

is marked as dot while the ACK plot is marked as a

square. Currently, protocol plotting and analysis is

provided only for TCP. Similar tools for other proto-

cols, such as SRM, are being developed and will be

integrated into nam in the same manner.

Network Layout Before animating a simulation

trace a layout for the network topology must be spec-

i�ed. This can be done manually by the user or auto-

matically by nam. Much work has been done in auto-

matic layout for arbitrary networks [15, 24, 50]. Nam

adopts an algorithm based on a spring-embedder

model [36] for its simplicity and e�ciency. It assigns

attractive forces on all links and repulsive forces be-

tween all nodes, and tries to achieve balance through

iteration. Experience has shown that it works very

well for topologies with less than 100 nodes. Manual

layout can be speci�ed in a trace �le or by interac-

tively editing an existing layout.

7 Related Work

Network Simulators. Network simulation has a

very long history. Ns itself is derived from REAL [46],

which is derived from NEST [23]. Although we can-

not list all relevant network simulators here, this sec-

tion describes distinguishing features of network sim-

ulators and compares prominent examples with ns.

Simulators have widely varying focuses. Many tar-

get a speci�c area of research interest, such as net-

work type (ATM Simulator [37]) or protocol (PIM-

SIM [76]). Others, including ns, REAL, OPNET [19],

INSANE [52] target a wider range of protocols.

The most general provide a general simulation lan-

guage with network protocol libraries (for example,

Maisie [5]). Very focused simulators model only the

details relevant to the developer. The di�erences

between network-targeted and general simulators is

much less clear.

The core of ns and most network simulators is a

discrete event processor. Several complementary ap-

proaches have been taken to improve accuracy, per-

formance, or scaling. Some simulators augment event

processing with analytic models of tra�c 
ow or

queueing behavior (for example, OO [58] and 
uid

network approximations [47]) for better performance

or accuracy.

13



Parallel and distributed simulation is a second

way to improve performance. Several simulators

support multiprocessors or networks of workstata-

tions [46, 5, 64]. Although ns is focused only on se-

quential simulation, the TeD e�ort has parallelized

some ns modules [64]; we see parallel simulation as

complementary to abstraction.

Abstraction is a �nal common approach to im-

proving simulator performance. All simulators adopt

some level of abstraction when choosing what to sim-

ulate. FlowSim was the �rst network simulator to

make this trade-o� explicit [1]. As discussed in Sec-

tion 5, ns supports several levels of abstraction.

A number of di�erent simulation interfaces are pos-

sible, including programming in a high-level scripting

language, a more traditional systems language [5], or

sometimes both [19]. Some systems focus on allowing

the same code to run in simulation and a live net-

work (for example, x-Sim [11] and Maisie [5]). Most

systems augment programming with a GUI shell of

some kind [23, 46, 19, 59, 10, 3, 76, 70, 5]. Ns pro-

vides a split-level programming model (see Section 2)

where packet processing is done in a systems lan-

guage while simulation setup is done in a scripting

language. Nam provides visualization output and we

plan to add some ability to edit topology.

Network Emulation. Previous work in network

emulation has included special purpose stand-alone

network emulators supporting packet delay (Yan's

Hitbox [2]). While these systems modify an existing

packet stream, more sophisticated emulation systems

such as Sun's Packet Shell [61] have allowed genera-

tion of new streams, typically for protocol testing.

By linking a general purpose simulator to live net-

work traces ns promises to accomplish both of these

aims.

Visualization and animation Like network sim-

ulation, visualization has a long history. Becker,

Eick and Wilks described the SeeNet system for 2-

D visualization of network data [9]. They display

network tra�c, overload and idle capacity on geo-

graphic maps. A matrix display of network overload

is provided as an alternative. Animation is supported

for inspecting time-varying characteristics of data.

Lamm et al uses 3D display to show web server loads

on a geographic map [71]. Di�erent tra�c types are

colored coded. Scullin et al uses Scattercube Ma-

trix metaphor to display web server performance in a

virtual reality environment [78]. The above systems

mainly focus on high-level statistics of network data,

while nam currently focuses on packet-level anima-

tion and inspection.

Many researchers have tackled the problem of visu-

alization of complex data. Antis et al 's SeeData gen-

erates 2-D visualization of database structure [4]. It

provides multiple colored views, each of which focuses

on a di�erent aspect of database structure, ranging

from abstract overview of the entire structure to de-

tailed associations among relations. Cat-a-Cone fo-

cuses on search and browsing of very large hierarchi-

cal data [41]. It uses ConeTree [67] for browsing and

overview of search structure, and WebBook [14] to

display search results. These systems share a com-

mon principle, i.e., multiple linked views are essen-

tial in visualizing complex data. Nam adopts this

principle. It organizes visualization around the main

topology view, from which a number of specialized

views may be derived.

8 Conclusions

The goal of network simulation is exploration of new

protocols and of old protocols in new environments.

Distribution of early versions of ns has resulted in

better understanding of TCP and router queueing

mechanisms. Currently ns is seeing widespread use

in the development of reliable multicast protocols.

Finally, we described our current and future e�orts in

scenario generation and protocol testing, simulation

scaling through the use of abstraction, and improved

visualization tools. By o�ering an expanding set of

network protocols suitable across a wider range of

scenarios and scales we hope to make future protocol

development and comparison easier.

14



References

[1] Jong-Suk Ahn, P.B. Danzig, D. Estrin, and

B. Timmerman. Hybrid technique for simulat-

ing high bandwidth delay computer networks. In

Proceedings of the ACM SIGMETRICS, pages

260{261, Santa Clara, CA, USA, May 1993.

ACM.

[2] J.S. Ahn, Peter B. Danzig, Z. Liu, and L. Yan.

Evaluation of TCP Vegas: Emulation and exper-

iment. In Proceedings of the ACM SIGCOMM,

pages 185{195, Cambridge, Massachusetts, Au-

gust 1995. ACM.

[3] C. Alaettinoglu, A. U. Shankar, K. Dussa-

Zieger, and I. Matta. Design and imple-

mentation of mars: A routing testbed.

Journal of Internetworking Research

and Experience, 5(1):17{41, mar 1994.

ftp://ftp.isi.edu/pub/cengiz/publications/

MaRS:Design.ps.gz.

[4] J.M. Antis, S.G. Eick, and J.D. Pyrce. Visual-

izing the structure of large relational databases.

IEEE Software, 13(1):72{9, January 1996.

[5] Rajive L. Bagrodia and Wen-Toh Liao. Maisie:

A language for the design of e�cient discrete-

event simulations. IEEE Transactions on Soft-

ware Engineering, 20(4):225{238, April 1994.

[6] Sandeep Bajaj, Lee Breslau, and Scott Shenker.

Is service priority useful in networks. In ACM

SIGMETRICS, June 1998.

[7] Sandeep Bajaj, Lee Breslau, and Scott Shenker.

Uniform versus priority dropping for layered

video. To appear in ACM Sigcomm, 1998.

[8] A. J. Ballardie, P. F. Francis, and J. Crowcroft.

Core Based Trees. In Proceedings of the ACM

SIGCOMM, San Francisco, 1993.

[9] Richard A. Becker, Stephen G. Eick, and Al-

lan R. Wilks. Visualizing network data. IEEE

Transactions on Visualization and Computer

Graphics, 1(1):16{28, March 1995.

[10] Bones, 1998. http://www.cadence.com/alta/

produces/bonesdat.html.

[11] L. Brakmo and L. Peterson. Experiences with

network simulation. In Proceedings of the ACM

SIGMETRICS. ACM, 1996.

[12] Ken Calvert and Ellen Zegura. Geor-

gia tech internetwork topology models.

http://www.cc.gatech.edu/fac/

Ellen.Zegura/graphs.html.

[13] Kenneth L. Calvert, Matthew B. Doar, and

Ellen W. Zegura. Modeling internet topology.

IEEE Communications Magazine, June 1997.

[14] Stuart K. Card, George G. Robertson, and

William York. The WebBook and the Web For-

ager: An information workspace for the World-

Wide Web. In Proceedings of the ACM SIGCHI

Conference on Human Factors in Computing

Systems, pages 416{417, Vancouver, Canada,

1996.

[15] Michael K. Coleman and D. Stott Parker.

Aesthetics-based graph layout for human com-

sumption. Software - Practice and Experience,

26(12):1415{38, December 1996.

[16] W. Dang and JosephMacker. The Multicast Dis-

semination Protocol (MDP) Framework. Inter-

net Draft: NONE working group, June 06, 1997.

Work in Progress.

[17] Peter B. Danzig, Sugih Jamin, Ram�on C�aceres,

Danny J. Mitzel, and Deborah Estrin. An em-

pirical workload model for driving wide-area

TCP/IP network simulations. Journal of In-

ternetworking: Research and Experience, 3(1):1{

26, March 1992.

[18] D. DeLucia and K. Obraczka. A multicast con-

gestion control mechanism using representatives.

Technical Report USC-CS TR 97-651, Depart-

ment of Computer Science, University of South-

ern California, May 1997.

[19] F.H. Desbrandes, S. Bertolotti, and L. Dunand.

Opnet 2.4: an environment for communication

15



network modeling and simulation. In Proc Eu-

ropean Simulation Symposium, October 1993.

[20] Matthew Doar. tiers.

ftp://ftp.nexen.com/pub/papers/tiers1.1.tar.gz.

[21] Matthew Doar. A better model for generating

test networks. In IEEE Global Telecommunica-

tions Conference / GLOBECOM '96, November

1996.

[22] Matthew Doar and Ian Leslie. How bad is naive

multicast routing? In IEEE INFOCOM, 1993.

[23] A. Dupuy, J. Schwartz, Y. Yemini, and D. Ba-

con. NEST: A network simulation and proto-

typing testbed. Communications of the ACM,

33(10):64{74, October 1990.

[24] E.R. Gansner, E. Koutso�os, S.C. North.

A technique for drawing directed graphs.

IEEE Transactions on Software Engineering,

19(3):214{30, March 1993.

[25] D. Estrin, D. Farinacci, A. Helmy, V. Ja-

cobson, and L. Wei. Protocol Independent

Multicast - Dense Mode (PIM-DM): Proto-

col Speci�cation. Proposed Experimental RFC.

URL http://netweb.usc.edu/pim/pimdm/PIM-

DM.ftxt,psg.gz, September 1996.

[26] D. Estrin, D. Farinacci, A. Helmy, D. Thaler,

S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei. Protocol Independent

Multicast - Sparse Mode (PIM-SM): Motivation

and Architecture. Proposed Experimental RFC.

URL http://netweb.usc.edu/pim/pimsm/PIM-

Arch.ftxt,psg.gz, October 1996.

[27] D. Estrin, D. Farinacci, A. Helmy, D. Thaler,

S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei. Protocol In-

dependent Multicast - Sparse Mode (PIM-

SM): Protocol Speci�cation. RFC 2117.

URL http://netweb.usc.edu/pim/pimsm/PIM-

SMv2-Exp-RFC.ftxt,psg.gz, March 1997.

[28] D. Estrin, M. Handley, A. Helmy, P. Huang, and

D. Thaler. A Dynamic Bootstrap Mechanism for

Rendezvous-based Multicast Routing. Submit-

ted to IEEE/ACM Transactions on Networking.

URL http://www.usc.edu/dept/cs/

technical reports.html, May 1997.

[29] Theodore Faber. Optimizing throughput in a

workstation-based network �le system over a

high bandwidth local area network. ACM Op-

erating Systems Review, 32(1):29{40, January

1998.

[30] Kevin Fall and Sally Floyd. Simulation-based

comparisons of tahoe, reno, and sack tcp. ACM

Computer Communication Review, 26(3), July

1996.

[31] S. Floyd, V. Jacobson, S. McCanne, C-G. Liu,

and L. Zhang. A reliable multicast framework for

light-weight sessions and application level fram-

ing. ACM/IEEE Transactions on Networking,

1997. To appear.

[32] Sally Floyd. Tcp and explicit congestion noti�-

cation. In ACM Computer Communication Re-

view. ACM, October 1994.

[33] Sally Floyd and Van Jacobson. On tra�c phase

e�ects in packet-switched gateways. Journal of

Internetworking: Research and Experience, 3(3),

September 1992.

[34] Sally Floyd and Van Jacobson. Random early

detection gateways for congestion avoidance. In

ACM/IEEE Transactions on Networking. ACM,

August 1993.

[35] Sally Floyd and Van Jacobson. Link-sharing

and resource management models for packet net-

works. In ACM/IEEE Transactions on Network-

ing. ACM, August 1995.

[36] T.M.J. Fruchterman and E.M. Reingold. Graph

drawing by force-directed placement. Software

- Practice and Experience, 21(11):1129{1164,

November 1991.

[37] Nada Golmie, Alfred Koenig, and David Su. The

NIST ATM Network Simulator Operation and

Programming Version 1.0. U.S. Department of

16



Commerce Technology Administration National

Insitute of Standards and Technology Com-

puter System Laboratory Advanced Systems

Division, Gaithersburg, MD 20899, aug 1995.

ftp://isdn.ncsl.nist.gov/atm-sim/sim man.ps.Z.

[38] R. Govindan, H. Yu, and D. Estrin. Scal-

able non-transactional replication in the Inter-

net. submitted for publication.

[39] Audio-Video Transport Working Group,

H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson. RTP: A Transport Protocol for

Real-Time Applications, RFC 1889 edition,

1996.

[40] C. H�anle. A comparison of architecture and per-

formance between reliable multicast protocols

over the MBone. Master's thesis, Institute of

Telematics, University of Karlsr�uhe, 1997.

[41] Marti Hearst and Chandu Karadi. Cat-a-cone:

An interactive interface for specifying searches

and viewing retrieval results using a large cat-

egory hierarchy. In Proceedings of the 20th

Annual International ACM/SIGIR Conference,

pages 246{255, Philadelphia, PA, July 1997.

[42] A. Helmy and D. Estrin. Simulation-based

`STRESS' Testing Case Study: A Multicast

Routing Protocol. Sixth International Sym-

posium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems

(MASCOTS '98), July 1998.

[43] Ahmed Helmy, Deborah Estrin, and Sandeep

Gupta. Fault-oriented test generation for multi-

cast routing protocol design. Formal Description

Techniques (FORTE XI) & Protocol Speci�ca-

tion, Testing, and Veri�cation (PSTV XVIII),

1998 IFIP TC6/WG6.1 Join International Con-

ference, Paris, France., November 1998.

[44] Ahmed A-G. Helmy. Systematic Testing of Mul-

ticast Protocol Robustness. Ph.D. Dissertation

proposal. Submitted as Technical Report to Com-

puter Science, University of Southern Califor-

nia., December 1997.

[45] Polly Huang, Deborah Estrin, and John Heide-

mann. Enabling large-scale simulations: selec-

tive abstraction approach to the study of mul-

ticast protocols. In Proceedings of the Inter-

national Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication

Systems, Montreal, Canada, July 1998. IEEE. to

appear.

[46] Srinivasan Keshav. REAL: a network simulator.

Technical Report 88/472, University of Califor-

nia, Berkeley, December 1988.

[47] George Kesidis and JeanWalrand. Quick simula-

tion of atm bu�ers with on-o� multiclass markov


uid sources. ACM Transactions on Modeling

and Computer Simulations, 3(3):269{276, July

1993.

[48] Satish Kumar, Pavlin Radoslavov, Dave Thaler,

Cengiz Alaettino�glu, Deborah Estrin, and Mark

Handley. The MASC/BGMP architecture for

inter-domain multicast routing. To appear, SIG-

COMM, September 1998.

[49] Will E. Leland, Murad S. Taqqu, Walter Will-

inger, and Daniel V. Wilson. On the self-

similar nature of Ethernet tra�c (extended ver-

sion). ACM/IEEE Transactions on Networking,

2(1):1{15, February 1994.

[50] P. Luders, R. Ernst, and S. Stille. An approach

to automatic display layout using combinatorial

optimization algorithms. Software - Practice and

Experience, 25(11):1183{1202, November 1995.

[51] B. Mah. An empirical model of http network

tra�c. In Proceedings of the IEEE Infocom,

Kobe, Japan, April 1997. IEEE.

[52] Bruce A. Mah. INSANE Users Manual. The

Tenet Group Computer Science Division, Uni-

versity of California, Berkeley 94720, may 1996.

http://HTTP.CS.Berkeley.EDU/ bmah/

Software/Insane/InsaneMan.ps.

[53] Matt Mathis and Jamshid Mahdavi. Forward

acknowledgement: Re�ning tcp congestion con-

trol. In ACM SIGCOMM. ACM, August 1996.

17



[54] Matt Mathis, Jamshid Mahdavi, Sally Floyd,

and Allyn Romanow. Tcp selective acknowledge-

ment options (rfc 2018). In Internet Request For

Comments, October 1996.

[55] S. McCanne. Router forwarding ser-

vices for reliable multicast. Note

199704141535.IAA10590@mlk.cs.berkeley.edu

to the Reliable Multicast list

rm@mash.cs.berkeley.edu, April 1997.

[56] S. McCanne, V. Jacobson, and M. Vetterli.

Receiver-driven layered multicast. In ACM SIG-

COMM, pages 117{130, Stanford, CA, U.S.A.,

August 1996.

[57] Steven McCanne, Eric Brewer, Randy Katz,

Lawrence Rowe, Elan Amir, Yatin Chawathe,

Alan Coopersmith, Ketan Mayer-Patel, Suchi-

tra Raman, Angela Schuett, David Simpson,

Andrew Swan, Teck-Lee Tung, David Wu, and

Brian Smith. Toward a common infrastructure

for multimedia-networking middleware. In Pro-

ceedings of the 7thInternational Workshop on

Network and Operating Systems Support for Dig-

ital Audio and Video, pages 39{49, St. Louis,

Missouri, May 1997. IEEE.

[58] Armin R. Mikler, Johnny S. K. Wong, and

Vasant Honavar. An object oriented approach

to simualting large communication networks.

Journal of Systems Software, 40:151{164, 1998.

huang folder: general simulator.

[59] Robb Mills. Comnet iii: Object-oriented net-

work performance prediction. In G.W. Evans,

M. Mollaghasemi, E.C. Russell, and W.E. Biles,

editors, Proceedings of the 1993 Winter Simula-

tion Conference, pages 237{239, December 1993.

[60] John K. Ousterhout. Tcl and the Tk Toolkit.

Addison-Wesley, Reading, MA, 1994.

[61] Steve Parker and Chris Schmechel. The packet

shell protocol testing tool. Software distribution

at http://playground.sun.com/psh/, 1997.

[62] V. Paxson. End-to-end routing behavior in the

internet. In ACM SIGCOMM, August 1996.

[63] Vern Paxson and Sally Floyd. Wide-area tra�c:

the failure of Poisson modeling. In ACM SIG-

COMM, pages 257{268, London, United King-

dom, August 1994. ACM.

[64] K. Perumalla, R. Fujimota, and A. Ogielski.

Ted - a language for modeling telecommuni-

cation networks. ACM SIGMETRICS Perfor-

mance Evaluation Review, 25(4), March 1998.

[65] A. Reddy. A self organizing monitoring archi-

tecture. Thesis Proposal, Available from the au-

thors, May 1997.

[66] Reza Rejaie, Mark Handely, and Deborah Es-

trin. Rap: An end-to-end rate-based congestion

control mechanism for realtime streams in the

Internet. Submitted to ICNP '98, available at

http://netweb.usc.edu/reza/icnp98.ps, 1998.

[67] George G. Robertson, Stuart K. Card, and

Jock D. MacKinlay. Information visualization

using 3D interactive animation. Communica-

tions of the ACM, 36(4):56{71, April 1993.

[68] K. Robertson, K. Miller, M. White, and

A. Tweedly. StarBurst Multicast File Transfer

Protocol (MFTP) Speci�cation. Internet Draft:

NONE working group, February 13, 1997. Work

in progress.

[69] D. Waitzman S. Deering, C. Partridge. Distance

Vector Multicast Routing Protocol, November

1988. RFC1075.

[70] Hussein Salama. Mcrsim user's manual, May

1995. huang folder: specialized simulator.

[71] W.H. Scullin S.E. Lamm, D.A. Reed. Real-

time geographic visualization of world wide web

tra�c. Computer Networks and ISDN Systems

(Fifth International World Wide Web Confer-

ence), 28(7-11):1457{68, May 1996.

[72] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson.

Scalable timers for soft state protocols. In IEEE

Infocom, 1997.

18



[73] Kannan Varadhan, Deborah Estrin, and Sally

Floyd. Impact of network dynamics on end-to-

end proocols: Case studies in TCP and reliable

multicast. Technical Report USC CS TR 98-672,

University of Southern California, March 1998.

[74] Vikram Visweswaraiah and John Heidemann.

Improving restart of idle TCP connections.

Technical Report 97-661, University of Southern

California, November 1997.

[75] Bernard M. Waxman. Routing of multipoint

connections. IEEE Journal on Selected Areas

in Communications, 6(9), December 1988.

[76] Liming Wei. The design of the USC PIM simu-

lator (pimsim). Technical Report 95-604, Uni-

versity of Southern California Computer Sci-

ence, Los Angeles, CA 90089-0781, aug 1995.

http://catarina.usc.edu/lwei/TR-95-604.ps.gz.

[77] David Wetherall and Christopher J. Linblad.

Extending Tcl for dynamic object-oriented pro-

gramming. In Proceedings of the USENIX

Tcl/Tk Workshop, page 288, Toronto, Ontario,

July 1995. USENIX.

[78] D.A. Reed W.H. Scullin, T.T. Kwan. Real-

time visualization of world wide web tra�c. In

Proceedings of 1995 ICASE/LaRC Symposium

on Visualizing Time-Varying Data, pages 31{45,

Williamsburg, VA, USA, September 1995.

[79] Ellen W. Zegura, Ken Calvert, and S. Bhat-

tacharjee. How to model an internetwork. In

IEEE INFOCOM, 1996.

19


