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ABSTRACT
Today’s malware often relies on DNS to enable communication
with command-and-control (C&C). As defenses that block C&C
traffic improve, malware use sophisticated techniques to hide this
traffic, including “fast flux” names and Domain-Generation Algo-
rithms (DGAs). Detecting this kind of activity requires analysis of
DNS queries in network traffic, yet these signals are sparse. As bot
countermeasures grow in sophistication, detecting these signals
increasingly requires the synthesis of information from multiple
sites. Yet sharing security information across organizational bound-
aries to date has been infrequent and ad hoc because of unknown
risks and uncertain benefits. In this paper, we take steps towards
formalizing cross-site information sharing and quantifying the ben-
efits of data sharing. We use a case study on DGA-based botnet
detection to evaluate how sharing cybersecurity data can improve
detection sensitivity and allow the discovery of malicious activity
with greater precision.
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1 INTRODUCTION
Cybersecurity incidents continue to increase in size, with highly
damaging economic and increasingly physical consequences. The
consequences of these incidents include an enormous loss of private
data on individuals (Anthem [1], OPM [8], Yahoo [10]) and corpo-
rations (Sony [5]), and the money spent cleaning up. Not limited
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to “simple” data loss, the damages are growing past the physical
boundary, affecting critical infrastructure, from industrial systems
(Stuxnet [12]), hospitals (ransomware [7]), and to our own homes
(IoT malware, phish).

For organizations to improve and maintain their cybersecurity
posture, they need to share data across and within organizations
during the incident response process. Data and working processes
are distributed and independent across and within organizations:
each organization has its own unique and incomplete view of the
Internet or local network. Data sharing during and after a security
incident helps expedite the incident response process by collec-
tively increasing the global knowledge and corresponding effort
against an attack. The increased, shared knowledge and resulting
collaboration helps lead to forward progress, defined as advances in
research and understanding, in improved network security.

Data sharing today is difficult as many organizations share lim-
ited or no information across other organizations for several rea-
sons. Organizations might not share their data because it contains
highly sensitive and private information (competitive intelligence,
proprietary data). Organizations also sometimes cannot share (if
prohibited by law), or choose not to share due to fear, uncertainty,
and doubt in the risks of data disclosure.

Even within an organization, different parts of the organization
are often discouraged or prevented from sharing. Groups might be
segmented in order to maintain independence and prevent conflicts
of interest (for example, a logical “firewall” between investment
groups to prevent insider trading, or the editorial and advertising
groups of a publication), and establish security (accounting and IT
have little to no visibility in the other’s systems).

Organizations that share data across other organizations and
within their own will accelerate progress in cybersecurity. Shar-
ing across different organizations enables them to solve problems
that are inherently distributed (stepping-stone attacks across many
network boundaries), as each organization contributes a different
view of the Internet. These benefits also apply to sharing within
different parts of large organizations.

Our first contribution is to provide the controlled, cross-site data
sharing mechanisms in Retro-Future (§3), a system that provides
retrospective, post-event understanding with time travel. Using a
query/response system for cross-site data sharing, we minimize
the risks in data disclosure for the querier and responder, allowing
both to manage the risks inherent in data sharing.

Our second contribution is to quantify the benefits of sharing
using our controlled, cross-site data sharing mechanisms in Retro-
Future through a case study (§4) in detecting botnet activity at
USC/ISI, Los Alamos National Laboratory (LANL), and Colorado
State University (CSU). We show that sharing improves diversity
in network data, allowing us to detect bots in secure networks
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where few bots exist and show how sharing improves our detection
algorithms’ sensitivity, allowing us to detect botnet activity with
greater precision. In addition to this case study, we are working on
using Retro-Future with other applications like detecting malicious
activity with DNS backscatter, and improving the security incident
response process.

Our mechanisms shift the risk-benefit trade-offs in data sharing,
showing that for this application, sharing makes sense. The Retro-
Future framework and tools are open-sourced and are available
online at https://ant.isi.edu/retrofuture. Our hope is that this exam-
ple and these tools will promote broader sharing of security-related
data in other applications.

2 PROBLEM STATEMENT
We next discuss why botnet activity detection without data shar-
ing at individual sites is insufficient and how sharing data with
Retro-Future addresses those insufficiencies. We also address Retro-
Future’s threat model with respects to sharing data, and how Retro-
Future counters these threats.

2.1 Detection Sensitivity
Today, organizations can use software like BotDigger [20] to detect
bot activity on a host by examining their DNS traffic for DNS access
patterns that indicate botnet C&C traffic.

BotDigger works well for large, university-sized organizations
(like Colorado State University, where it originated). However, it
becomes much less sensitive for organizations that are not as large
and diverse as CSU. Several kinds of diversity are relevant: in popu-
lation and in richness. For example, diversity in population includes
the volume of network traffic, number of users, applications, and
hosts. Diversity in richness can include the number of network pro-
tocols, operating systems, and user types (sysadmins, casual users,
etc.). For example, DNS captured might not reveal much suspect
activity at USC/ISI since it has a low population (158 hosts) and
low diversity (mostly Linux-based hosts). DNS captured at a larger
campus like CSU will have both high population (20k hosts) and
high diversity (Windows, Mac OS X, Linux) due to its relatively
open and permissive network. Secure organizations like LANL (26k
hosts) or those involved in banking and finance might have high
population and low richness, because their network is relatively
more locked down than others, restricting the types and amounts
of permissible network traffic.

Our insight is that cross-site sharing with Retro-Future allows
larger, more diverse organizations (CSU) to share sensitive data
securely with smaller or less diverse organizations (USC/ISI and
LANL, respectively) to help them detect malicious activity in their
networks (§4.1). This sharing can also benefit the larger organiza-
tion (§4.2 and §4.3). CSU can help because it has a much higher
chance of malicious activity happening on its network: CSU (20k
hosts running Windows/Mac OS X/Linux) has greater diversity in
population and richness compared to USC/ISI (158 hosts, mostly
Linux) and LANL (26k hosts).

Data collection and sharing with other, outside organizations
poses privacy and legal risks. Collecting DNS and corresponding
botnet activity (with BotDigger) data is privacy-sensitive since the
data can include false positives and unvetted activity, and data

collection involves IPs of end users. While each site will have its
own specific sharing policy, in our case for CSU to be comfortable
sharing this data with its collaborators, the data needs to be secured
in transit and in use, and certain details (end-user IPs) must be
omitted or minimized.

Retro-Future addresses these concerns about data sensitivity by
providing the access controls and query system needed to securely
share this data. With access controls, data is shared only with
authorized users—the original, raw data remains at the origin site.
The query system (combined with access controls) enables each
site to selectively choose which details about the data are shareable
based on their risk tolerance: in the following case study, end-user
IPs are not shared by CSU and cannot be queried for. With the
Retro-Future system in place, CSU is then comfortable with the
controlled sharing of botnet when handled by Retro-Future.

2.2 Threat Model
Retro-Future’s threat model (summarized in Table 1) looks at the
primary threats to sharing data (via query-response) and their
countermeasures when data is at rest, in motion, and in use. Retro-
Future handles data in three stages in response to a query: we first
pull data from archives (“at rest”), process and manipulate the data
(“in use”), then transmit the results to the client (“in motion”).

While some threats are general to any distributed system, col-
lection and sharing of sensitive data with Retro-Future introduces
particular risks that must be carefully addressed (shown by the
‘*’ symbol in Table 1). Retro-Future is designed to address each of
these threats and minimize these risks. For example, an active data
breach (via many intrusive queries over a short period of time) can
be mitigated with restricted query languages and “privacy budgets”
which limit the amount and execution time of remote queries.

If the threats to data sharing are not properly mitigated, they can
lead to unintended data disclosure or misuse, with further financial
or physical consequences.

We also assume that the systems external to Retro-Future (to
include the hardware and operating systems which Retro-Future
operates and network data live on) are reasonably secured against
general external and internal threats (for example, using NIST’s
framework [15]). For example, while we design Retro-Future to
be robust to an eavesdropper on the network, we assume that the
underlying Retro-Future system is trustworthy and has not been
compromised by a malicious actor.

3 CONTROLLED SHARING FOR BOTNET
ACTIVITY DETECTION

We next describe our approach and design decisions on how we
enable controlled information sharing with cross-site queries.

The goal of controlled cross-site information sharing is to share
usable data while balancing the privacy and exposure risks (§2.2)
between query and response.

We achieve this goal in Retro-Future with the principled risk and
privacy management needed to share data safely through trust and
sharing policies and query management. Owners first set and mod-
ify accesses, even granting temporary escalated privileges, based
on their trust relationships and sharing policies with other organi-
zations (described in [9]). Queries to data are then moderated (§3.1)

https://ant.isi.edu/retrofuture
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Table 1: Threat Model Summary (‘*’ indicate threats introduced or caused by Retro-Future)

.

Data . . . Threat Actor Countermeasure

at rest unauthorized access* internal, external secured data archive with data encryption and minimization (§3.3)
abused access internal strong user authentication and authorization, data federation (§3.3)

in use active data breach* internal ACLs, restricted query languages, query logs and audits, privacy
and execution budgets (§3.1, §3.2)

passive data leaks* internal remote and moderated queries, data anonymization and
redaction, differential privacy (§3.1, §3.2)

in motion eavesdropping external secure communication protocols (§3.3)
wrong endpoint* internal, external public-key authentication, certificate/public-key pinning (§3.3)

such that more-specific queries are more likely to be answered than
broad queries, and queries are always remotely processed to control
disclosure (§3.2),

We emphasize owners’ full control of the system and data using
best common practices in system security (§3.3) while maintaining
flexibility over data accessibility.

Finally, we note that our technical mechanisms complement legal
or policy mechanisms in making data sharing possible. It is difficult
for technical mechanisms to stop all information flow (consider
side-channel attacks, for example), so policies may limit sharing
and support auditing; these may be supported by formal or legal
agreements. The broader legal and policy mechanisms are outside
the scope of this paper.

3.1 Moderating Queries
Retro-Future enables cross-site information sharing with others
using a query/response system as its foundation and additional risk
and privacy management on top of the queries. After a remote
client has been authenticated and authorized, the scope of queries
is still limited, allowing fine-grained disclosure (described later
in this section). Retro-Future thus moderates incoming queries
from remote clients by sensitivity before processing them to further
minimize risks to privacy in the response.

Objectives: We need to moderate queries on both responder
and querier sides to control the query’s sensitivity. Controlling
the sensitivity will enable each party to preserve privacy while
providing (or receiving) usable output. Our insight is that we can
achieve a privacy balance by continuously adjusting the informa-
tion trade-offs in the query and response. We can apply this insight
to both the responder and querier below.

Responders moderate queries by dynamically adjusting what
Retro-Future does in response to incoming queries, selecting be-
tween different levels or layers of sensitivity. For example, the
querier is more likely to get the answers that they need by adding
additional details in their query. Put another way, responders are
more inclined to answer more specific questions (“did 10.0.0.2 visit
example.com?”) than broad ones (“who visited example.com?”).

Similarly, we also need to balance the privacy needs of the querier
as the information disclosed in their query presents a privacy risk.
In the previous example query, the more specific question reveals
that the querier is particularly interested in an IP (the broader
query obscures that fact). Situations, such as an ongoing security

incident, may require the querier to limit what they disclose, with a
minimal initial query followed by additional details in subsequent
queries or a post-mortem.

Mechanisms: Retro-Future has several mechanisms that sup-
port moderating queries that enable queriers to receive actionable
information (enabling forward progress) and responders to protect
privacy (managing risk): a privacy budget to control the level of
sensitivity and contextual access to additional query levels.

Users are allocated and spend a certain amount of their pri-
vacy/token budget (that replenishes over time) with any given
query. Although general budget allocation is still an unexplored
area (and remains an unsolved problem in its roots of differential
privacy), we assign rough values based on the query’s attributes
like the data being queried or the query’s specificity. For example,
packet payload inspection is much more sensitive than its headers
and correspondingly has higher cost—both in privacy budget and
disclosure by the querier. A compromise that lowers both privacy
and disclosure costs might be a query that matches on the hash of
its contents.

Another mechanism to support query moderation and, ulti-
mately, forward progress is the contextual access to additional
queries. For example, a positive response on an initial query about
a vulnerability (“were you affected by X?”) might be followed up
with a more sensitive query (“which IPs were affected by X?”), a
query that would otherwise be rejected as overly sensitive with-
out the context of an ongoing vulnerability. Thus, this ability to
upgrade queries in light of context and corresponding evidence
supports flexible policies, and Retro-Future’s time travel allows
privacy decisions to be made after-the-fact. Abuse of upgraded
queries would be limited with the mechanisms in §3.2.

Upgraded permissions can be handled manually (by a human)
or semi-automatically, which can lead to a fully automated “query
negotiation” process (where both querier and responder settle on
a satisfactory cost). Retro-Future supports manual escalation and
automated de-escalation (“downgrade-until-success”) of a query.
Similarly, Retro-Future provides the raw APIs (via RPCs and ACLs)
that a query negotiation mechanism could use.

3.2 Controlling Data Disclosure
Problem and Objectives: Controlling data disclosure is the final
step in the query process and part of how we balance risk and for-
ward progress, protecting users’ privacy in the data while providing
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useful results. Our insight is that by controlling the level of detail in
the results while the query is being processed, the querier can query
on more sensitive attributes (returning more useful results) while
the responder maintains their users’ and organizational privacy.
For example, it is sometimes sufficient to the querier to receive
a simple yes/no response, in contrast to a more traditional reply
of matching packets or log entries. The terse nature of the simple
reply limits disclosure of more sensitive data.

Mechanisms: We control data disclosure to solve the problem
of providing usable results while protecting user privacy with three
types of techniques: data minimization, rate limiting, and query
logging and auditing.

Data minimization controls what is being shared by obfuscat-
ing or removing sensitive attributes that contain PII. Retro-Future
makes use of existing tools like dnsanon [18] and LANDER [19],
which anonymizes or removes payloads in DNS and network packet
capture data. These tools can be used to minimize and replace the
original raw data in archives (minimizing the risk of disclosure)
or used on-the-fly as the results are being processed (keeping the
original preserved).

Rate limiting controls disclosure by giving users a strict budget to
spend on queries and query processing time, limiting data through-
put for unintended data disclosure: Retro-Future uses existing rate
limiting techniques in the new context of data sharing for preserv-
ing privacy. For example, execution time limits places constraints
on how long a query can take, ensuring that users can’t monopolize
available processing power or run data-intensive queries (a query
that runs on all available data).

Finally, existing techniques in query logging and auditing allows
operators to quantify exactly what information is being shared
and assess whether the data disclosure controls are too strict or
permissive and adjust accordingly.

3.3 Securing the Retro-Future System
Because organizations are now using Retro-Future to collect and
store sensitive data (network traffic, system logs, etc.) that was
previously discarded, Retro-Future must be and remain secure to
prevent increasing existing threats or introducing new to data dis-
closure.

Objectives: To meet an organization’s security needs, Retro-
Future’s system security emphasizes and builds on data owners’
full control over the system and data. Full control over data (thus
eschewing storing data at cooperatives, escrows, or the cloud),
allows owners to manage the risks in data sharing. By storing and
managing data locally, organizations control both its disclosure and
the flexibility in choosing how it is shared.

Mechanisms: To secure Retro-Future and corresponding data
access, we adhere to best practices, using standardized and widely
deployed protocols for access control (client-side certificates and
Kerberos, SSH/TLS transport). Securing local data archives is done
with current best practices, including data encryption, aging (re-
moving information over time), and anonymization.

Table 2: Number of domains and IPs detected as suspicious
activity at each site independently (self) and with sharing.

Site Domains % IPs %

CSU 1845 100% 9 100%
self 1845 100% 9 100%
with sharing — — — —

LANL 52 100% 2 100%
self 10 19% 1 50%
with sharing 42 81% 1 50%

USC/ISI 30 100% 2 100%
self 0 0% 0 0%
with sharing 30 100% 2 100%

4 QUANTIFYING THE BENEFITS OF
SHARING FOR BOTNET ACTIVITY
DETECTION

To show the benefits of data sharing, we next look at how cross-site
data sharing helps in support of detecting bots and botnet activity
on local networks from their command and control (C&C) traffic.
We earlier looked at why DGA-based botnet detection will benefit
from cross-site data sharing (§2). We will show how Retro-Future’s
cross-site sharing in the context of DGA-based botnets is beneficial
to participating sites by first evaluating each site’s individual ability
in detection (§4.1), showing how sites can leverage data sharing to
improve detection (§4.2), and their detection sensitivity (§4.3).

4.1 Can sites detect malicious activity on their
own?

We first ask if sites can detect malicious activity on their own with
BotDigger (without Retro-Future’s data sharing).

We run BotDigger over 30 days (2017-Feb-16 to 2017-Mar-16) at
CSU (20k hosts, 5.2 B queries), USC/ISI (158 hosts, 46.2 M queries),
and LANL (26k hosts, 3.3 B queries). Botdigger looks at local hosts’
DNS queries, clustering together and labeling queried domains
as suspect based on their linguistic features. BotDigger will filter
out false positives by setting a minimum threshold of 10 domains
resolving to the same IP (this threshold was found in [20] to have
an optimal true positive rate). We then analyze the suspected C&C
domains and IPs to evaluate BotDigger’s efficacy (did BotDigger
detect bots or botnet activity?) and look for commonalities across
sites (did each BotDigger instance detect the same botnet activity?).

Table 2 shows us that sites can sometimes detect malicious ac-
tivity on their own (“self”). CSU, a large organization with data
diversity, is able to detect suspect malicious activity with 1845
suspected C&C domain names resolving to 9 IP addresses. LANL,
sitting between CSU and USC/ISI in terms of data diversity, detects
10 suspected C&C domain names resolving to 1 IP address. BotDig-
ger at USC/ISI detected 0 suspect domains and IP addresses. Each
site has its own localized view of suspicious activity, resulting in
no detected commonalities across sites.

The amount of network diversity at an organization affects the
amount of malicious activity detected—greater diversity correlates
with more malicious activity. Although we see that LANL has a
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Table 3: Common suspicious activity seen at each site.
(‘*’ denotes detection with CSU’s data sharing)

Site # Domains Seen
98.124.204.16 208.100.26.234

CSU 10 26
LANL* 0 42
USC/ISI* 27 3
Total (distinct) 37 70
CSU & USC/ISI (overlap) 0 1

comparable number of hosts and queries to CSU, its network is a
relatively unique, secure environment (similar to a network in the
financial or health services sector) where attackers have greater
difficulty in taking over hosts. Smaller organizations (like USC/ISI)
may not have sufficient network data diversity to detect large-scale
malicious activity: it is possible that USC/ISI has no bots on its
network, or BotDigger’s algorithm is not sensitive enough.

We next ask if sites can detect more malicious activity when
they use Retro-Future to sharing BotDigger’s output of detected
malicious activity with each other.

4.2 Can sites detect more malicious activity
when they share?

We next show how sites can detect more botnet activity when using
Retro-Future to share sensitive data. Here we focus on the benefit
of sharing data from a large organization with data diversity (CSU)
with less diverse (LANL) and smaller (USC/ISI) organizations.

To test if sites can detect moremalicious activity when they share,
we take CSU’s botnet activity lists and share it with LANL and
USC/ISI using Retro-Future. Both sites then check whether its hosts
have queried or interacted with hosts in CSU’s lists, potentially
revealing activity with undetected malicious hosts. Retro-Future
is required to support sharing since CSU regards botnet detection
data as sensitive and restricted for limited sharing only.

LANL and USC/ISI retrieve CSU’s list of 1845 suspected C&C do-
mains and 9 IP addresses found by BotDigger (§4.1, list published on
2017-Mar-16). We then check if either site has queried or interacted
with these hosts during a period of [2017-Feb-14, 2017-Apr-15] (30
days before and after the list was published), potentially revealing
activity with previously undetected malicious hosts.

Table 2 shows that sites (“with sharing”) can detect more mali-
cious activity when they share. After sharing CSU’s active botnet
list, LANL and USC/ISI are able to find 81% and 100% of their to-
tal suspect domains and 50% and 100% of their total suspect IPs,
respectively.

Table 3 highlights that data sharing enables sites to discover
and detect commonalities across multiple sites. LANL and USC/ISI,
again using CSU’s shared botnet activity list, find matches on two
IP addresses with 71 additional distinct domain names (107 total),
previously unknown to either site (1 domain was seen by both
CSU and USC/ISI). For example, both LANL and USC/ISI saw in
their respective DNS activity 42 and 3 domains resolving to IP
208.100.26.234—activity that had not been detected by their local
BotDigger instances.

Table 4: The sensitivity of BotDigger’s detection is improved
with controlled data sharing. (‘*’ denotes that entry passes
the detection threshold)

Site # Domains Detected
(color in Figure 1) 72.52.4.119 69.172.201.153 209.197.2.10

CSU (green) 3 4 1
LANL (blue) 7 9 0
USC/ISI (red) 0 0 21*
Total 10* 13* 22*

72.52.4.119
[2016-Sep-10, 2016-Oct-25]

69.172.201.153
[2016-Sep-22, 2016-Nov-06]

209.197.2.10
[2017-Jun-05, 2017-Jul-20]
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Figure 1: The sensitivity of BotDigger’s detection is im-
proved with controlled data sharing. All three domain/IP
sets meet or pass the detection threshold.

Prior to sharing, a small organization like USC/ISI would not have
been able to locally determine its interaction with CSU’s detected
malicious activity (we saw earlier that USC/ISI detected 0 suspect
domains/IPs in §4.1). We next examine if the larger, more diverse
site also benefits from sharing.

4.3 Can sites improve their detection
sensitivity when they share?

We next demonstrate how sites can improve the sensitivity (true
positive rate) of malicious activity detection when they share data
with one another. False negatives can occur when potential botnet
activity (C&C domains and IPs) as identified by BotDigger falls
under the threshold of fewer than 10 IPs (as set in §4.1 and [20])
resolving to the same domain.

Sites can reduce false negatives by sharing and merging each
others’ BotDigger results and identifying any positives, suspect
activity thatmeets the threshold. Each site exchanges botnet activity
lists with C&C domain and IP pairs that fall below the threshold
with a 45-day sliding window. They then combine the exchanged
lists with their own results and check if the resulting output crosses
the threshold, thus revealing previously undetected activity.
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Table 4 and Figure 1 show that sites can improve their detection
sensitivity when they share. Prior to sharing, each site (with the
exception the 209.197.2.10 entry at USC/ISI) would havemissed each
corresponding domain/IP set as a false negative. With data sharing,
the number of domains resolving to 3 particular IPs (72.52.4.119,
69.172.201.153, 209.197.2.10) reaches the minimum threshold of 10
domains per IP and are re-identified as possible C&C activity for
further follow-up at each site.

Surprisingly, we see that even large, diverse organizations can
benefit from sharing data. Prior to sharing, CSU would not have
detected 209.197.2.10 as suspect, with 1 domain resolving to that
IP. After exchanging botnet activity reports with USC/ISI, CSU
combines USC/ISI’s results with its own, 209.197.2.10 is now flagged
as suspect, adding 1 additional IP/domain pair (+10% additional
entries in their aggregated botnet activity list for the period of
[2017-Jun-05, 2017-Jul-20]).

Organizations with all levels of diversity in their network traffic
can benefit from sharing data by improving their detection sen-
sitivity in botnet activity detection. In this final part of the case
study, all sites benefited from sharing their respective BotDigger
output, detecting more suspect activity that had previously fallen
beneath the detection threshold. We plan on extending this case
study in future work by analyzing detection performance over a
longitudinal two-year period.

5 RELATEDWORK
There have been many efforts and much work done in enabling
and promoting Internet data sharing. We build on prior experience
in information sharing frameworks and data collection.

Data Sharing Frameworks: Several logical frameworks for
enabling and implementing data sharing have been proposed in
prior work, outlining privacy, usability, and utility considerations
in developing policies for data sharing.

Allman and Paxson, recognizing the prevalence of ad-hoc data
sharing in the research community, proposed a set of high-level con-
siderations for data sharing through “Acceptable Use” policies [2].
While they primarily consider Internet measurement data, these
policies can be applied to cybersecurity incident data shared by
a given organization. Retro-Future provides the mechanisms that
can be used to implement and support data sharing in conjunction
with these Acceptable Use policies, for example, by refusing queries
from a requester who violates policy.

Kenneally andClaffy proposed a Privacy-Sensitive Sharing Frame-
work (PS2) that seeks to balance risks that can occur with data
sharing with privacy management [6]. Their framework enumer-
ates the principles that a data sharing component should have, and
challenges the assumption that the privacy risks of sharing data
outweigh the benefits and they show that PS2 enables their organi-
zation, CAIDA [4], to realize utility goals in a risk-sensitive matter.
Organizations can use PS2 as a guide to create policies and agree-
ments with others, and use Retro-Future to enforce such policies in
data sharing. We have also quantified the benefits of data sharing
using Retro-Future in a case study of DGA-botnet detection.

We previously enumerated the privacy principles and corre-
sponding engineering approaches for sharing cybersecurity data
across organizational boundaries, recognizing the risk and benefit

trade-off and the need to balance risks in disclosure with making
forward progress in research and solving operational problems [9].
The Retro-Future system uses these principles and engineering
techniques to implement a system for controlled information ex-
change across organizations and quantifies its benefits with a case
study in malicious activity detection.

Data Collection, Storage, and Retrieval: There is much work
in network data capture and collection, from the user-level [14]
(used for capturing traffic at a specific node) to the network level [3,
11, 19]. Prior work has looked at both efficient (using deduplica-
tion or removing redundancy [17]) and secure (using encryption)
capture and storage of network traffic for long-term storage and
retrieval, especially in the context of intrusion detection [16] and
network security analysis [13].

Retro-Future builds upon this work by looking at data capture
and collection in the context and with the explicit purpose of shar-
ing with other, outside organizations. Retro-Future encourages
organizations to collect, archive, and use their network traffic and
system log data, providing the mechanisms needed to share and
use data with others in the context of collaborative (across organi-
zations) intrusion detection and network security analysis.

6 CONCLUSIONS
This paper described our initial steps towards formalizing cross-site
information sharing, and quantified the benefits of data sharing
in the context of botnet detection. We enable controlled sharing
by implementing cross-site queries through query moderation and
controlled data disclosure in Retro-Future, a broader framework
providing post-event understanding with time travel. We used the
controlled sharing in Retro-Future in a case study on DGA-based
botnet detection, showing how sharing cybersecurity data enabled
sites to detect more malicious activity on their networks and im-
prove the sensitivity of their detection algorithms.

Our future work entails further developing and evaluating trust
relationship and data sharing policies between organizations, and
greater longitudinal studies using Retro-Future and its data sharing
in applications like DGA-based botnet detection, cybersecurity
incident response, and network-wide malicious activity detection
with DNS backscatter.
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