
Web-scale Content Reuse Detection (extended)
USC/ISI Technical Report ISI-TR-692, June 2014

Calvin Ardi John Heidemann
USC/Information Sciences Institute, Marina del Rey, CA 90292

ABSTRACT
With the vast amount of accessible, online content, it is not
surprising that unscrupulous entities “borrow” from the web
to provide filler for advertisements, link farms, and spam and
make a quick profit. Our insight is that cryptographic hash-
ing and fingerprinting can efficiently identify content reuse
for web-size corpora. We develop two related algorithms,
one to automatically discover previously unknown duplicate
content in the web, and the second to detect copies of dis-
covered or manually identified content in the web. Our de-
tection can also bad neighborhoods, clusters of pages where
copied content is frequent. We verify our approach with
controlled experiments with two large datasets: a Common
Crawl subset the web, and a copy of Geocities, an older set
of user-provided web content. We then demonstrate that we
can discover otherwise unknown examples of duplication for
spam, and detect both discovered and expert-identified con-
tent in these large datasets. Utilizing an original copy of
Wikipedia as identified content, we find 40 sites that reuse
this content, 86% for commercial benefit.

1. INTRODUCTION
A vast amount of content is online, easily accessi-

ble, and widely utilized today. User-generated con-
tent fills many sites, sometimes non-commercial like
Wikipedia, but more often commercial like Facebook
and Yelp, where it supports supports billions of dollars
in advertising. However, sometimes unscrupulous enti-
ties repackage this content, wrapping their commercial
content around this previously published information to
make a quick profit.

There are several recent examples of misleading reuse
of content. Content farming repost copies of Wikipedia
or discussion forums to garner revenue from new adver-
tisements, or to fill out link farms that support search-
engine “optimization”. E-book content farming repub-
lishes publicly available information as e-books to at-
tract naive purchasers and spam the e-book market.
(Tools like Autopilot Kindle Cash can mass-produce
dozens of “books” in hours.) Review spamming posts
paid reviewers that are often fake and use near-duplicate
content to boost business rankings. The common thread

across these examples is that they gather and republish
publicly available information for commercial gain.

Our goal is to find this kind of republishing on the
Internet. We develop a new approach to find dupli-
cate of information systematically across the Internet
using hashing. A hash function takes arbitrary content
input and produces a statistically unique, simple, fixed-
length bitstring. We build lists of hashes of all doc-
uments (or “chunks”, subparts of documents) in web-
size corpora, allowing very rapid detection of content
reuse. Although minor changes to content results in dif-
ferent hashes, we show that copying can often be iden-
tified by similarities across document chunks. While
prior work has explored semantic fingerprints [16, 29,
20] and locality-sensitive hashing [19] for approximate
matches, our focus is on exploiting cryptographic hash-
ing to avoid false positives, and to explore blind discov-
ery of duplicated content.

Our approach is designed to detect content reuse for
the problems we identified earlier. We show that we can
both discover previously unknown duplicated content,
such as spam in a partial web corpus, and link farming
in Geocities, an older dataset of user content (§ 6.3). We
also show our ability to detect expert-identified content,
using an original and older copy of Wikipedia, in a web
corpus. Utilizing an original copy of Wikipedia as iden-
tified content, we find 40 sites that reuse this content,
86% for commercial benefit (§ 7).

The contribution of this paper is to show the potential
of hash-based search of web-size corpora to detect con-
tent duplication. We show that it is possible to discover
duplicated content through blind search through a full
corpus followed by human-assisted pruning. We also de-
scribe our system to detect labeled content in a web-size
corpus. We demonstrate discovery and detection in our
system and show bad neighborhood detection’s robust-
ness to random document changes, handling 4.4−5.4×
the average number of chunks per page in changes. We
validate our approach with controlled experiments over
two datasets: the Common Crawl subset of the web
with 2.86 B files, and in Geocities, an older dataset of
user content with 26.7 M files. We then demonstrate

1

that we can discover otherwise unknown examples of
duplication for spam, and detect both discovered and
expert-identified content in these large datasets.

2. PROBLEM STATEMENT
Replicating web content is easy. Some individuals

bulk copy high-quality content from Wikipedia or Face-
book to overlay advertisements, or to back-fill for link
farms. Others reproduce selected content to imperson-
ate high-value sites for phishing. We seek to develop
new approaches to address two problems. First, we
want to automatically discover content that is widely
duplicated, or large-scale duplication in a few places.
Second, given list of known duplicated content, we want
to detect where such content is duplicated. We next de-
fine these two problems more precisely.

Consider a corpus C of files f . Interesting corpora,
such as a crawl of the Internet, are typically far too
large to permit manual examination. We assume the
corpus consists of semi-structured text; we use minimal
understanding of the semantics of the text to break it
into chunks cf . Each file is identified by URLs; we can
exploit the hierarchical structure in the path portion of
the URL, or treat them as flat space identified only by
the sitename portion.

Our first problem is discovery. In discovery our goal
is to discover a labeled dataset L consisting of content
of interest we expect to be copied. The simplest way to
determine L is for an expert to examine C and manu-
ally identify it. Although not possible in general, semi-
automated labeling is suitable for some problems (§ 7)
where one one can identify content likely to be copied.

Alternatively, we show how to discover L through a
blind process, without external knowledge. We explore
this approach to discover content that is widely dupli-
cated in the web (§ 6).

The detection process finds targets T in the corpus C
that duplicate portions of labeled dataset L. In to find-
ing individual files f that show high levels of copying,
we also explore how to exploit the hierarchical grouping
of documents in C to find bad neighborhoods N where
significant amounts of duplication exists.

3. METHODOLOGY
We next describe our general approach to detect-

ing content reuse. Although we have designed the ap-
proach for web-like corpora, it also applies to file sys-
tems or other corpora containing textual content like
news sources.

3.1 Overview
Our general approach is to compute a hash for each

data item, then use hashes to find identical objects. In
this section we present our workflow and address the
discovery and detection phases of our approach.

Collecting the Data:

0. Crawl the web, or use an existing web crawl, and
correct acquisition errors (§ 3.4.1).

1. For each file f in corpus C, compute a hash of the
whole file f : H(f) and

2. Split f into a vector of chunks cf = {cf,1, . . . , cf,n}
and hash each chunk H(cf,i) to from a chunk hash
vector. (Although we do not use vector order, the
same hash value can appear multiple times if there
are duplicate paragraphs in the same file.)

Discovery: (§ 3.2)

3. Populate the labeled dataset with files Lf or chunks
Lc by either:

(a) informed discovery: seeding it with known
content a priori

(b) blind discovery: (i) identifying the most fre-
quently occurring files or chunks in C as suspi-
cious, after (ii) discarding known common but
benign content (stop-chunk removal, § 3.4.2)

Detection: (§ 3.3)

4. Simple Object Matching : Given a labeled dataset
objects Lo (where objects are files or chunks), find
all matching objects o ∈ C where H(o′) ∈ Lo.
This results in target (suspicious) files and chunks:
Tf and Tc.

5. Partial Matching : To identify files containing par-
tial matches, we use the chunk hash vectors com-
pute the ratio of target chunks to total file content:

contains(Lc, f) =
|Lc ∩H(cf)|
|H(cf)|

If contains(Lc, f) is greater than a threshold, we
consider f to be a partial target in Tp.

6. Bad Neighborhood Detection: Apply stop-chunk
removal (§ 3.4.2), then for each neighborhood

N = {fN,1, fN,2, . . . , fN,n}

where the files share a hierarchical relationship,
compute the overall ratio of labeled content matches
to total content:

badness(N) =
∑
∀n∈N

contains(Lc, n))

|N |

If badness(N) is greater than a threshold, we con-
sider N as a bad neighborhood in TN .

7. Push detection to distributed crawlers. (§ 3.6)

The thresholds for partial matching and bad neigh-
borhood detection are configurable; by default we use
one standard deviation over the mean and elaborate on
choosing a threshold in § 3.2. We next examine the
design decisions behind this algorithm in more detail.

2

3.2 Discovery
Discovery is the process of building a labeled dataset

of items we wish to find in the corpus during detection.
We can do this with an informed or blind process.

With informed discovery (Step 3a), an expert pro-
vides labeled content of interest L, perhaps by explor-
ing C manually, or using external information. As one
example, we know that Wikipedia is widely copied, and
so we seed L with a snapshot of Wikipedia (§ 7). As an-
other example, one could seed L with banking websites
to identify phishing sites that reproduce this content.

One can also identify widely reproduced content through
a blind process (Step 3b) that automatically discovers
widely duplicated content. Blind identification is ap-
propriate when an expert is unavailable, or if the source
of copying is unknown. Blind identification populates
Lf and Lc with the most frequently occurring files or
chunks in the corpus. We set the discovery threshold
depending on the dataset size and the type of object be-
ing identified. For example, one would set the discovery
threshold to be higher when the dataset size is larger.
We looked at the ROC curves and found a trade-off
between false positives (FP) and true positives (TP).
There was no strong knee in the curve, thus we picked
thresholds with a reasonable balance of FP to TP. In
our Common Crawl dataset of 40.5B chunks, we set the
threshold to 105.

Additionally, in our discovery process we expect to
find trivial content that is duplicated many times as
part of the web publishing process: the empty file, or a
chunk consisting of an empty paragraph, or the reject-
all robots.txt file. These will inevitably show up very
often and litter our L: while common, they are not
very significant or useful indicators of mass duplication.
To make blind identification more useful, we remove
this very common but benign content using stop-chunk
removal, described in § 3.4.2.

Given a threshold, all objects o in the corpus C whose
number of duplicates exceeds the threshold and are not
“stop chunks” are automatically labeled and added to
the labeled dataset L:

L := ∀o ∈ C : duplicates(o) > threshold, o /∈ {stop chunks}
We next look at properties of the discovery process.
An important property of discovery is that it is not

distributive—analysis must consider the entire corpus.
While parts of discovery are inherently parallelizable
by dividing the corpus to various workers, the final
data join and addition of objects to the labeled dataset
must be done on the corpus at the same time. Given
an example threshold of 1000, consider a corpus C =
C1 ∪ C2. Consider an object j = j1 = j2 such that
|j| = |j1| + |j2|: j1 ∈ C1, duplicates(j1) = 1000 and
j2 ∈ C2, duplicates(j2) = 100. When evaluated sepa-
rately, we see that neither object j1 or j2 in their respec-

tive corpus are discovered. When evaluated together
(duplicates(j1 ∪ j2) = 1100), the number of duplicates
of j exceeds our threshold and is then discovered. Thus
we have shown it is necessary to run the discovery pro-
cess on the corpus in its entirety to ensure completeness.

Discovery runtime is O(n log n) and performance on a
moderate-size Hadoop cluster is reasonable (hours). We
look at the runtime performance to understand which
part of discovery dominates the computation time and,
if possible, identify areas for improvement. After we
hash all the desired objects (O(n)), we sort and count
all hashes (O(n log n)), and cull objects (O(n)) whose
number of duplicates do not exceed the threshold. Dis-
covery’s performance is dominated by sorting, leading
to an overall performance of O(n log n).

3.3 Detection
In the detection phase, we find our targets T at vary-

ing levels of granularity in the corpus C by looking for
matches with our labeled dataset L.

In simple object matching, our targets T are an exact
match of an object o in L. Given Lo (where o can be
a file f or a chunk c), find all o′ ∈ C where H(o′) ∈
Lo and add to the set of targets T. Simple matching
is essentially performing a join operation between Lo

(small) and C (large). Assuming Lo is constant size,
the join is bounded by sorting performance and thus
is O(n log n). We can then analyze T to understand if
objects in L are being duplicated in C and how often it
is being duplicated. While those statistics are relevant,
we expect that duplication happens often and would like
to further understand the details and trends of where
duplication happens.

We also consider partial file matching. Rather than
look at whole objects, we can detect target files that
partially duplicate content from elsewhere based on a
number of bad chunks. Partial matches are files that
belong in Tp because they contain part of L. Contain-
ment examines the chunk hash vector H(cf) of each file
to see what fraction of chunks are in L.

Finally, we use bad neighborhood detection to look
beyond identification of individual files. Examination
of “related” files allows detection of regions where large
numbers of related files each have a duplicated copy.
For example, finding a copy of many Wikipedia pages
might lead to a link farm which utilized Wikipedia to
boost its credibility or search engine ranking.

We define a neighborhood based on the hierarchical
relationship of files in the corpus. A neighborhood N
is defined by the URL prefix p, it consists of all files
f ∈ C where p(f) = p(N).

Many sites have relatively shallow hierarchies, so in
the worst case each site is a neighborhood. However, for
complex sites with rich user content (as in our Geoci-
ties dataset), individuals may create distinct neighbor-

3

hoods. Each site will have neighborhoods at each level
of the hierarchy. For arxiv.org/archive/physics/,
we would consider three neighborhoods: arxiv.org/

archive/physics/, arxiv.org/archive/, and arxiv.

org/.
We assess the quality of a neighborhood by apply-

ing partial matching to all chunks in the neighborhood
N using contains(Lc, N) in Step 5 and add N to the
set of targets T if the result is greater than a threshold.
Like chunk hash vector for files, the neighborhood chunk
hash vector will have duplicated components when there
are multiple copies of the same chunk in the neighbor-
hood. Because neighborhood analysis is done over a
larger sample, when we find regions that exceed our de-
tection threshold, it is less likely to represent an outlier
and instead show a set of files with suspicious content.
We next look at properties of the detection process.

Unlike discovery, the detection process is paralleliz-
able when processing distinct neighborhoods N (i.e.,
neighborhoods that do not share the same URL pre-
fix). This parallelizable property allows us to process
many neighborhoods simultaneously without affecting
whether a particular neighborhood is detected as “bad”
or not. Given C1 and C2, we assert that detected(L,C1∪
C2) = detected(L,C1) ∪ detected(L,C2). This holds
true because C1 and C2 share no neighborhoods: given
some neighborhood N ∈ C1, N /∈ C2. As before, run-
time performance is O(n log n) because of the sort dur-
ing join. However, since neighborhoods are independent
and numerous, we get “easy” parallelism. With p pro-
cessors, we get runtime O(n log n)/p.

3.4 Cleaning the Data
We do two types of cleaning over the data, first we

identify recursion errors that result in false duplication
from the crawling process, and then we eliminate com-
mon, benign features with stop-chunk removal. We eval-
uate the effectiveness of these methods in § 5.1.

3.4.1 Detecting and Handling Recursion Errors
Crawling the real-world web is a perilous process,

with malformed HTML, crawler traps, and other well
understood problems [6, 17]. We detect and remove
crawler artifacts that appear in both Common Crawl
and Geocities. Our main concern is recursion errors,
where a loop in the web graph duplicates files with
multiple URLs—such results will skew our detection of
copied data. We see this problem in both datasets and
use heuristics involving how often a URL path compo-
nent is repeated and remove that URL from processing
if it is determined to be a recursion error. We evaluate
these heuristics in § 5.1, finding that these heuristics
have a very low false positive rate in detecting crawler
problems, and are sufficient to avoid false positives in
our duplication detection. Future work may refine these

heuristics to reduce the number of false negatives in
recursion-error removal.

3.4.2 Stop Chunk Removal
We see many common idioms in both files and chunks.

We call these stop chunks, analogous to stop words in
natural language processing (such as “a”, “and”, and
“the”). For chunks, these include the empty paragraph
(<p></p>), or a single-space paragraph (<p> </p>).
For files, examples are the empty file, or a reject-all
robots.txt file. These kind of common, benign idioms
risk skewing our results.

We remove stop chunks before applying bad neighbor-
hood detection. We maintain a list of 226 stop chunks.
This list is short enough to allow manual comparison;
if it goes too large we can apply Bloom filters to sup-
port efficient stop-chunk removal [5]. We have devel-
oped this list manually. Potential future work is to au-
tomate stop-chunk discovery.

3.5 Choice of Hash Function
Central to our work is choice of a hash function, which

will reduce arbitrary data to a short value. We em-
ploy the SHA-1 [21, 13] cryptographic hash function for
its precision—identical input always produces the same
output, and different input yields a different output.
Alternatives such as locality-sensitive [19] and seman-
tic [24] hashes are also possible, but potentially intro-
duce a large number of false positives that would occur
in a corpus the size of the web. We go into more de-
tail about our choice of hash function and why we pre-
fer it over other alternatives in the technical report [4].
Explicit comparison to locality-sensitive and semantic
hashing algorithms is an opportunity for future work.

3.6 Shifting Detection Into Network
Although our prototype evaluates web data centrally,

it can improve crawling and distributed detection.
Our hash-based detection algorithm allows efficient

distributed detection of content, given a labeled dataset.
Hashing’s efficient detection can be placed in distributed
crawlers, or at copy-detection tools at hosting sites.
Pushing detection into crawlers or sites improves effi-
ciency, avoiding the need to centralize content for de-
tection. In addition, our studies about detection ro-
bustness to mutation apply to distributed detection.

Our blind discovery algorithm can generate this la-
beled dataset foreknowledge of what is being copied.

4. DATASETS AND IMPLEMENTATION
Datasets: This paper uses two public web datasets:

Common Crawl and Geocities. We use the Common
Crawl crawl-002 dataset (Ccc) collected in 2009/2010
and publicly provided by the Common Crawl Founda-
tion [10] to represent recent web data. crawl-002 in-

4

arxiv.org/archive/physics/
arxiv.org/archive/physics/
arxiv.org/archive/
arxiv.org/
arxiv.org/

cludes 2.86 B items, which is 26 TB compressed and
99 TB uncompressed. Most of its data is HTML or
plain text, with some supporting textual material (CSS,
JavaScript, etc.); it omits images.

As a second dataset, we use the Geocities archive
(Cg) taken the Archive Team [3] just before the Geoc-
ities service was shuttered by Yahoo! in October 2009.
The dataset was compiled between April–October 2009
and contains around 33M files (650 GB compressed) in-
cluding documents, images, MIDI files, etc. in vari-
ous languages. Although this dataset is considerably
older, it provides a relatively complete snapshot of user-
generated generated content.

Implementation: We implement our methods and
post-processing on a local cluster of 55 commodity PCs
running Apache Hadoop [1]. Processing was done with
custom MapReduce programs [11], Apache Pig [2], and
GNU Parallel [28]. Our current cluster can intake data
at a rate around 9 TB/hour.

Common Crawl data is stored in and publicly avail-
able on Amazon S3. Our initial hashing of files and
chunks in Ccc was done using AWS in 11.5k compute
hours, producing 2.86 B file hashes and 40.5 B chunk
hashes along with backreferences to the original dataset
(about 1.8 TB of metadata). Discovery and detection
are done over these datasets in our local cluster.

5. VALIDATION
We next validate our design choices, showing the impor-
tance of cleaning and correctness of our methodology.

5.1 Do Our Cleaning Methods Work?
Initial analysis of our raw data is skewed by down-

loading and ripping errors, and identification of bad
neighborhoods can be obscured by common benign con-
tent. We next show that our cleaning methods from
§ 3.4 are effective.

We have reviewed our data and taken steps to con-
firm that recursion errors do not skew discovery of du-
plicates. While only 1% of all 913M neighborhoods in
Common Crawl are the result of recursion errors, re-
moving the obvious errors is helpful although not es-
sential. Details of recursion error removal and its val-
idation are omitted here due to space, but are in our
technical report [4].

We next describe validation that our stop-chunk re-
moval process (§ 3.4.2) is effective. To identify stop
chunks, we manually examine the 500 most frequently
occurring chunks in Common Crawl and identify 226
as benign. These chunks occur very frequently in the
dataset as a whole, accounting for 35% of all chunks
that occur ≥ 105 times. To verify that we do not need
to consider additional frequent words, we also examine
the next 200 and identify only 43 as benign, showing
diminishing returns (these 43 account for only 1% of all

100 101 102 103 104 105 106 107

Number of Duplicates

100
101
102
103
104
105
106
107
108
109

1010

Nu
m

be
r o

f O
cc

ur
en

ce
s

File-level Granularity, Common Crawl (2.86B files)

100 250 1000
5000

duplicated content (files)

Er rrrrr
jjj

dis
co

ve
ry

 th
re

sh
old

Figure 1: File-level discovery of injected dupli-
cates (black triangle) in Ccc, compared to file
frequency (grey dots). Very common files: j:
JavaScript, r: robots.txt, E: the empty file.

chunks that occur ≥ 105 times). We therefore stop with
the benign list of 226 chunks found in the top 500 most
frequent as it is sufficient to avoid false positives due to
benign data.

To demonstrate the importance of common listing, we
compare bad neighborhood detection with and without
common listing. Stop chunks dilute some pages; if we
leave stop chunks in the Common Crawl dataset, we
detect 1.88 M (2.35%) more bad neighborhoods than
the 79.9 M bad neighborhoods we find after stop-chunk
removal, compared to 900 M total neighborhoods.

5.2 Can We Discover Known Files and Chunks?
We next turn to the correctness of our approach. We

begin by validating that hashing can detect specific con-
tent in spite of the background “noise” of millions of
web pages with the following experiment.

Duplicated full files: We first consider a spammer
that duplicates a file many times to provide content
for thousands of parked domains. To emulate this sce-
nario, we take a known web page (blog.archive.org
as of 2013-08-22) and duplicate it from d = 100 to 5000
times. For each duplication we generate a unique, em-
ulated website, process that data with steps 0–2 of our
methodology, merging this with our full processed data.

We then build our labeled dataset via blind discov-
ery. Our blind discovery process populates the labeled
dataset with the most frequently occurring content. In
Common Crawl (Ccc), our blind discovery threshold is
103: all files that have more than 103 duplicates are
labeled.

Figure 1 shows the results of this experiment in Ccc

file frequency. Our discovery threshold is marked by a
red dotted line at x = 103; all the content (indicated
by points) past the threshold are added to the labeled

5

dataset. Duplicating the blog moves it from unique,
unduplicated content (a grey dot in the top left) to an
outlying point with 4k pages occurring 5000 times (as
indicated by a black triangle labeled 5000). We see that
the point passes our threshold and we have discovered
our injected and massively duplicated blog. This change
from top-left to an outlier above and further right on
the graph represents what happens when spammers du-
plicate portions of the web.

Spammers may duplicate files fewer number of times.
To consider this scenario, we change the number of du-
plications d to values less than our previous example.
The blue circles represents the injected file had it been
duplicated different amounts of times (at d = 100, 250,
1000). When the injected files have been duplicated
≤ 103 times (three blue circles on and to the left of the
red threshold line), those files will not be automatically
discovered; all points past the red threshold line (the
black triangle at x = 5000) will. Note that even with
fewer duplications, the injected files duplicated fewer
times will still be obvious outliers on the graph and may
be detected with manual analysis or with more sensitive
automation.

Partially duplicated pages: The above experi-
ment shows our ability to track duplicated files, but
spammers almost always add to the duplicated content
to place their own links or advertisements. We therefore
repeat our study of duplicating files, but add a different
paragraph to the head and tail the duplicated page to
represent unique advertisements attached to each page.
Since each page varies here, file-level analysis will de-
tect nothing unusual, but chunk-level analysis will show
outliers. The size distribution of pages is skewed and
appears heavy tailed (with mean of 48 chunks, median
of 23, and max 428). Our discovery threshold is in-
creased from 103 to 105, because the number of chunks
in Ccc is much larger than the number of pages.

Figure 2 shows chunk-level valuation of this scenario.
The red dotted line at x = 105 marks our discovery
threshold: all 6k chunks past the line are discovered,
added to the labeled dataset, and further analyzed.

We now see more evidence of duplicated chunked con-
tent, which is shown by a cluster of black triangles (as
opposed to a single outlying point) corresponding to
the 1.2 B chunks that make up the duplicated content
of blog.archive.org (originally 242 K chunks). The
light grey circles correspond to all the existing chunks
in Ccc.

We see that many of the chunks that make up the
pages of blog.archive.org pass our defined threshold
and we discover 78% of total distinct chunks. Similar
to the previous experiment, we can “control” where the
points are distributed by varying the number of times
we duplicate the site. If all the chunks in the site had
fallen below the threshold, we would not have automati-

100 101 102 103 104 105 106 107 108 109

Number of Duplicates

100
101
102
103
104
105
106
107
108
109

1010
1011

Nu
m

be
r o

f O
cc

ur
en

ce
s

Chunk-level Granularity, Common Crawl (40.5B chunks)

duplicated content
(chunks)

<p>

dis
co

ve
ry

 th
re

sh
old

Figure 2: Chunk-level discovery of injected du-
plicates (black triangles and blue circles) in Ccc,
compared to chunk distribution (grey dots).

100 101 102 103 104 105 106

All Chunks Duplicated # Times

0.0

0.2

0.4

0.6

0.8

1.0

%
C

hu
nk

s
D

is
co

ve
re

d
(T

hr
es

ho
ld
>

10
5
)

Chunk-level Granularity, Common Crawl (40.5B chunks)

discovered 78% when we
duplicate all chunks 5000 times

Figure 3: Percentage of chunks discovered in
blog.archive.org given the number of times
blog.archive.org is duplicated.

cally discovered the site via our blind discovery process.
Hashing a finer-grained object in our discovery pro-

cess allows us to discover more content that has been
duplicated. File-level discovery returns a binary result:
either we discover the file or not. Chunk-level discov-
ery allows us to discover varying percentages of content
depending on how many times it was duplicated. Fig-
ure 3 shows how many chunks from blog.archive.org

are discovered given the number of times all chunks have
been duplicated. When we duplicate all the chunks 5000
times (black triangles in Figure 2 and the point marked
by the red dotted line in Figure 3), we discover 78% of
the chunks. (Trivially, we discover 100% of the chunks
when we duplicate the site ≥ 105 times.)

Our simple threshold detects some but not all dupli-
cated chunks that were injected. The duplicated con-
tent (black triangles) in Figure 2 are clear outliers from
most of the traditional content (grey dots), suggesting

6

a role for manual examination. This experiment shows
that chunk-level analysis is effective even though only
portions of pages change. We next look at the effects of
content mutation more systematically.

5.3 Can We Detect Specific Bad Pages?
Having shown that we can discover known files and

chunks, we next validate our detection mechanism by
finding known targets T and understanding the condi-
tions in which our mechanism fails. Given our labeled
dataset curated by an expert (Lexpert) and one via blind
discovery (Lblind), can we detect bad pages? Further-
more, if we gradually mutate each page, at what point
can we no longer detect the mutated page?

To evaluate our bad page detection mechanism, we
continue our prior example where we rip and duplicate
blog.archive.org; this set of pages becomes our in-
jected corpus Ci. We mutate Ci in a consistent manner
that can be applied to all pages in Ci to get a resulting
C′i. We can categorize each mutation into the following:

+ Add additional content, such as ads or link spam

∆ Modify existing content by rewriting links

− Remove content such as headers, copyright notices,
footers, or the main body of the the page

We build both Lexpert and Lblind from Ci (as described
in § 5.2), then run the detection process to see if pages
in C′i are detected.

We continue mutating C′i (e.g., C′′i , . . . ,C
′(n)
i) to un-

derstand the kinds and amount of mutations that the
detection process can handle. While we utilize a copy
of blog.archive.org to build L and Ci, our results
for each mutation experiment are consistent with other
L because we mutate each of the 4626 pages. For each
experiment, we have the base site Ci and apply n inde-

pendent mutations to each page resulting in C
′(n)
i .

In our first mutation experiment, we continuously add
content to a page such that the page is diluted with non-
target content and we do not detect it (due to the bad-
ness ratio not reaching a particular threshold). Figure 4
shows the performance with both Lexpert (green) and
Lblind (blue). The bottom x-axis details the number of
chunks added per page relative to the average number
of chunks per page (cpp = 48). The y-axis shows the
average badness ratio per page (averaged over all 4626
pages in Ci). The badness threshold is labeled on each
graph at 0.144 (we describe its computation in a later
section). We perform 10 runs over Ci at each x value
and take the average. We omit error bars when the
standard error is < 0.01 for clarity.

This experiment shows that we can tolerate 3.4× or
more the mean number of chunks per page (cpp) in
each labeled dataset and still detect duplicated content
(Lblind: 3.4×, Lexpert: 4.5×). The behavior is not sur-
prising: if we were to dilute the content with many other

unrelated chunks, the average badness would asymptot-
ically approach 0.

We next continuously delete content randomly; this
will increase the badness ratio but may be overlooked
because the number of total chunks on the page will be
smaller (e.g., a page with a badness ratio of 1.0 contain-
ing only 3 chunks seems negligible). Figure 5 shows the
average badness of a page given the number of chunks
we delete per page. Using an Lexpert (green), we see that
the ratio is always 1.0: deleting chunks does not affect
the badness because the entire page is bad regardless.
Next, while we initially see a increase in badness when
using Lblind (blue), it is not monotonically increasing
as the number of deleted chunks per page increases. In
this experiment, our detection mechanism on average
handles all 400 deletions (per page).

We see a large variance in badness at the tail of the

graph because the population of pages in C
′(n)
i (af-

ter mutation) decreases; as we increase the number of
deleted chunks per page, the average number of chunks
per page (orange) falls. Pages also cease to exist after
all the chunks have been deleted. This behavior is ex-
pected: as a trivial example, consider a page with only
two chunks only one of which is in L: the badness of
the page is 0.5. If we delete the bad chunk, the badness
falls to 0, but if we delete the other, the badness in-
creases to 1. Thus, depending on the chunks we delete,
the badness of a page will fluctuate.

In our final experiment, we continuously modify con-
tent to the point where we no longer can detect it (e.g.,
if every chunk is modified at least once, our detection
algorithm will fail). We consider a stream of mutations:
we randomly pick a chunk to modify, with replacement
(in successive mutations, the same chunk can be mod-
ified again). Figure 6 shows the average badness of
a page given the number of random changes with re-
placement. We see an exponential drop in the average
badness of the page as we linearly increase the num-
ber of random changes (with replacement) per page.
On average, our bad page detection mechanism handles
1.8×cpp (Lblind) and 2.0×cpp (Lexpert) changes before
the page falls below the threshold.

To show that we can tolerate 3.4 × cpp mutations,
we look at the performance of our bad page detection
mechanism. Figure 7 shows how many pages we detect
as bad given the number of random changes per page
in Ci. In the perfect case (such as using Lexpert on an
unmodified site), we detect all 4.6k pages in Ci as bad.
While the Lexpert performs much better initially (de-
tecting between 300-700 more pages than with Lblind),
we see both lines eventually converge.

We can detect known bad pages to a certain degree
of mutation. Our validation experiments show that we
can handle between 1.8−4.5×cpp mutations on Ci de-
pending on the type of mutation and the labeled dataset

7

0 1 2 3 4 5 6 7 8
Relative Number of Added Chunks per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Ba

dn
es

s o
f a

 P
ag

e

expert L

blind L badness threshold

3.
4
×,

 b
lin

d
L

 (b
lue

)

4.
5
×,

 e
xp

er
t L

 (g
re

en
)

0 50 100 150 200 250 300 350
Number of Added Chunks per Page (absolute)

Data Mutation: adding chunks, blog.archive.org

Figure 4: Effects of continuously adding chunks
on pages.

we utilize. While utilizing the Lexpert slightly increases
the number of mutations we can tolerate (compared to
using the Lblind), the Lexpert contains over 4.8× the
number of entries (|Lexpert| = 21k, |Lblind| = 4.4k). We
next transition into the validation of detecting known
bad neighborhoods.

5.4 Can We Detect Known Bad Neighborhoods?
Given our success finding bad pages, we next validate

the robustness of detecting known bad neighborhoods.
Recall that a neighborhood contains a set of pages that
share a common URL prefix. As with pages, we evalu-
ate both expert and blind labeled datasets, and change
a known target to evaluate the sensitivity of our detec-
tion mechanism.

We evaluate our detection mechanism by designing a
mutation experiment with an example neighborhood N .
The goal of our experiment is to understand the degree
of change before our detection process fails. We con-
tinue to use the same neighborhoodN (blog.archive.org)
and the same approach as in the previous section (§ 5.3)
with the following change: mutate all pages in N in a
consistent manner to get a resulting N ′: n mutations
results in N ′(n). We then run the bad neighborhood
detection process to see if N ′(n) is detected.

We see similar results in the performance of bad neigh-
borhood detection compared to bad page detection. Fig-
ures 8 through 10 show the bad neighborhood detec-
tion performance using both Lexpert (green) and Lblind

(blue) for add, delete, and modify operations, respec-
tively. We compare the relative number of mutated
chunks per page (cpp) against the resulting badness ra-
tio of the neighborhood after mutation (N ′(n)). We use
a fixed badness threshold as described in § 6.3. We
again take the average over 10 runs over N at each x

0 1 2 3 4 5 6 7 8
Relative Number of Deleted Chunks per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ba
dn

es
s o

f a
 P

ag
e

Data Mutation 20 rounds: deleting chunks, blog.archive.org

0 50 100 150 200 250 300 350 400
Number of Deleted Chunks per Page (absolute)

badness threshold

expert L (green) blind L (blue)

25
50
75
100
125
150
175
200
225

Av
er

ag
e

Nu
m

be
r o

f C
hu

nk
s p

er
 P

ag
e

Figure 5: Effects of continuously deleting chunks
on pages.

0 1 2 3 4 5 6 7 8
Relative Number of Random Changes per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ba
dn

es
s o

f a
 P

ag
e

0 50 100 150 200 250 300 350
Number of Random Changes per Page (absolute)

Data Mutation: mutating chunks, blog.archive.org

badness threshold

1.
8
×,

 b
lin

d
L

 (b
lue

)
2
.0
×,

 e
xp

er
t L

 (g
re

en
)

Figure 6: Effects of continuously changing
chunks on pages.

8

0 1 2 3 4 5 6 7 8
Relative Number of Random Changes per Page (cpp)

0

1000

2000

3000

4000

Av
er

ag
e

Ba
dn

es
s o

f a
 P

ag
e

0 50 100 150 200 250 300 350
Number of Random Changes per Page (absolute)

Data Mutation: mutating chunks, blog.archive.org

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f P
ag

es
 D

et
ec

te
d

as
 B

adexpert L (green)

blind L (blue)

Figure 7: Number of pages detected as bad af-
ter continuously changing chunks on pages in
blog.archive.org.

value and omit error bars when standard error is < 0.01.
Our experiments show that we can tolerate between

4.4− 5.4× cpp mutations, and that bad neighborhood
detection is much more robust than bad page detection—
on average our process can handle 2.7 – 3.0×more mod-
ifications per page than bad page detection. Analysis of
the neighborhood is much more robust because we con-
sider the badness across a collection of pages and have
a larger population of content to work with; consider-
ing only a page when calculating badness is much more
susceptible to fluctuation and not as robust to mutation
because of its smaller magnitude.

We have now validated our mechanisms that we will
now use in two applications: content reuse detection
over web content using the blind process and detection
of expert-identified content in the web.

6. APPLICATION: DUPLICATION OF WEB
CONTENT

We next turn to applying our approach by considering
discovery and detection of duplication of web content,
applying blind discovery to both our Common Crawl
and Geocities datasets. We use this application first
to compare design alternatives of file- and chunk-level
hashing, then we use our method to evaluate bad neigh-
borhoods in each dataset.

6.1 Why is File-level Discovery Inadequate?
We first consider file-level discovery on both datasets.

File-level comparisons are overly sensitive to small changes,
so we do not expect to find interesting duplicated con-
tent, but to instead establish a baseline against which
to evaluate chunk-level comparisons.

Figure 1 shows the frequency of file-level hashes for

0 1 2 3 4 5 6 7 8
Relative Number of Added Chunks per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ba
dn

es
s o

f t
he

 N
eig

hb
or

ho
od

Data Mutation: adding chunks, blog.archive.org neighborhoods

0 50 100 150 200 250 300 350
Number of Added Chunks per Page (absolute)

badness threshold

4.
4
×,

 b
lin

d
L

 (b
lue

)

5.
2
×,

 e
xp

er
t L

 (g
re

en
)

Figure 8: Effects of continuously adding chunks
on each page in N .

subcat.
Description |f | % Type
Common (benign) 45 Benign

robots.txt 32 71% Benign
JavaScript libraries 8 18% Benign
HTTP error pages 5 11% Benign

Empty 2 Benign
Misc. 3 Benign
Total 50

Table 1: Categories of the 50 most frequent files
in Ccc

the 2.86 B files in Common Crawl. The data shows a
long-tail distribution of file frequency, as one would ex-
pect, with 2.52 B unique files, and 75 distinct files with
more than 105 duplicates. We label several benign du-
plicated files, including the empty file (E), several vari-
ants of robots.txt (r), and several common JavaScript
libraries (j). Table 1 describes the top 50 most occur-
ring files; all are benign.

More interesting files might not be in the top 50.
Since the top 50 are all benign, we next look at a ran-
dom sample of frequently occurring files. We draw 40
random files from the 7569 unique files with more than
103 occurrences. Table 2 shows how we classify this
sample. We see that file-level detection finds only be-
nign content, finding commonly reused infrastructure.

We confirm these results by repeating this process on
Geocities (Cg). We find similar prevalence of libraries
and benign shared files. The primary difference is that
we see 85% of the top 150 most frequent files in Geoc-
ities are images, including the Geocities logo, colored
bullets, and similar logos.

9

0 1 2 3 4 5 6 7 8
Relative Number of Deleted Chunks per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Ba

dn
es

s o
f t

he
 N

eig
hb

or
ho

od

Data Mutation: deleting chunks, blog.archive.org neighborhoods

0 50 100 150 200 250 300 350 400
Number of Deleted Chunks per Page (absolute)

expert L (green) blind L (blue)

badness threshold
25

50

75

100

125

150

175

200

Nu
m

be
r o

f C
hu

nk
s i

n
Ne

igh
bo

rh
oo

d
(×

10
00

)

Figure 9: Effects of continuously deleting
chunks on each page in N .

0 1 2 3 4 5 6 7 8
Relative Number of Random Changes per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ba
dn

es
s o

f t
he

 N
eig

hb
or

ho
od

Data Mutation: mutating chunks, blog.archive.org neighborhoods

0 50 100 150 200 250 300 350
Number of Random Changes per Page (absolute)

badness threshold

5.
3
×,

 b
lin

d
L

 (b
lue

)
5.

4
×,

 e
xp

er
t L

 (g
re

en
)

Figure 10: Effects of continuously changing
chunks on each page in N .

subcat.
Description |f | % Type
Common (benign) 32 Benign

JavaScript libraries 13 41% Benign
robots.txt 9 28% Benign
HTTP error pages 8 25% Benign
Cascading Style Sheet 2 6% Benign

Misc. 8 Benign
Pornography 1 12.5% Benign
Placeholder 1 12.5% Benign
Other 6 75% Benign

Total 40

Table 2: Classification of a sample of 40 unique
files with more than 103 occurrences in Ccc

6.2 How Does Chunking Affect Discovery?
We next turn to chunking to see if duplication of por-

tions of web pages is more common than entire pages.
Here we focus on text-based files (HTML, plaintext,
JavaScript) and use paragraph-based chunking (§ 3.1).

Figure 2 shows frequency-occurrence distribution of
the 40.5 B chunks in Common Crawl (Ccc). Again,
we see a heavy-tailed distribution, where about 40%
of chunks are unique, but about 3.7 B distinct chunks
appear more than 105 times. The most common chunk
is the empty paragraph (<p>).

The finer resolution of chunking allows us to begin
to see more interesting duplication. Analysis shows dis-
covery of different kinds of duplication: affiliate links,
JavaScript ads/tracking and scripts, and benign content
dominating the list. Table 3 classifies the 100 most fre-
quent chunks. After common web idioms (empty para-
graph, etc.), we see templates from software tools or
web pages begin to appear.

subcat.
Description |c| % Type
Common (benign) 68 Benign
Templates 17 100% Benign

e-Commerce 8 47% Benign
Other 9 53% Benign

Misc. 15 Benign
Total 100

Table 3: Categories of the top 100 distinct
chunks in Ccc.

subcat.
Description |c| % Type
Misc. 4 Benign
JavaScript 7 100 Benign

advertising 3 42 Ambiguous
tracking 2 29 Ambiguous
escaped 1 14 Benign
other 1 14 Benign

Templates 83 100 Benign
navigation 17 20 Benign
forms 32 39 Benign
social 4 5 Benign
other 30 36 Benign

Spam 1 Malicious
Spam? / Scam? 5 Ambiguous
Total 100

Table 4: Classification of a sample of 100 distinct
chunks with more than 105 occurrences in Ccc

10

100 101 102 103 104 105 106

Number of Duplicates

100

101

102

103

104

105

106

107

108

N
um

be
ro

fO
cc

ur
en

ce
s

Chunk-level Granularity, Geocities (97M chunks)

Many unique items

Few highly
duplicated items

eval(unescape(’%70%61%72%65%6E%74...’))

Google AdSense

<p>
(filtered)

Figure 11: Chunk-level Discovery on Cg (97M
chunks, after heuristic and benign listing).

Again, we turn to a random sample of the tail to un-
derstand what makes up duplicated content. We draw
a sample of 100 chunks from those with more than 105

occurrences and classify them in Table 4.
This sample begins to show common web components

that support monetization of websites. JavaScript oc-
curs some (7%) and used for advertising via Google
AdSense (3%), user tracking, and analytics (2%). We
sampled one instance of spam where an article from
The Times (London) was copied and an advertising
snippet was included in the article for travel insurance.
Other snippets were potentially spam-like or linking to
a scam (5%), but ambiguous enough to qualify as a non-
malicious (if not poorly designed for legitimate moneti-
zation) site.

We also find instances of potentially malicious es-
caped JavaScript: decoding it reveals an email address
(obfuscated via JavaScript to throw off spammers). Most
content we discovered are elements of sites that make
heavy use of templates (83%) such as navigation ele-
ments, headers, and footers. Given an Lo of the most
frequently occurring content, this is not surprising: thou-
sands of pages containing such template elements would
naturally show up at the tail of the distribution.

We confirm our results over a second dataset with
chunk-level discovery on Cg (Geocities) in Figure 11.
We see a similar distribution overall, and similar kinds
of templates and JavaScript as in Ccc.

We discovered and examined the kinds of content du-
plicated in Ccc. Chunking identifies frequent duplica-
tion, but not bad behavior. However, we can now use
the results to build a labeled dataset of objects Lo. We
next utilize Lo in our detection mechanism to identify
and detect areas where copying runs rampant.

0 20 40 60 80 100
Badness Percentage (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
(H

is
to

gr
am

)/
P

[x
<
X

]
(C

D
F)

ba
dn

es
s

th
re

sh
ol

d

Bad Prefixes (8.88%)

Figure 12: Frequency of badness of neighbor-
hoods in Ccc, as a histogram (bars) and CDF
(lines).

6.3 Are There Bad Neighborhoods in the Real
World?

Chunking is successful at identifying bad chunks and
pages, but duplication for profit can draw on many re-
lated pages to maximize commercial potential. Detec-
tion at the individual page-level can result in false pos-
itives, so we would prefer to detect groups of related
pages that show a significant amount of copied content.
We now shift our focus to detecting bad neighborhoods.

In Common Crawl: To look for bad neighbor-
hoods, we utilize the top 2121 common distinct chunks
from Common Crawl as our labeled dataset Lc (from
§ 3.2), and identify bad neighborhoods in the full dataset
using the algorithm in § 3, step 6. Ccc contains 900 M
neighborhoods. Our detection threshold uses the mean
and standard deviation across all neighborhoods.

As one would hope, most neighborhoods N ∈ Ccc

are not bad (91%). Figure 12 shows a combined his-
togram and CDF the bad content ratio of all neigh-
borhoods. We observe that 79.8 M prefixes (9%) out of
900 M would be classified as a bad neighborhood: neigh-
borhoods with badness > 0.163 (since µN,cc = 0.04 and
σN,cc = 0.123, and the threshold is µN,cc + σN,cc).

To understand the nature of the neighborhoods we
identify as employing common content, we extract a
sample of 40 neighborhoods from the 19.6 M that are
above the threshold and classify them in Table 5. We
find 82.5% of the sampled sites to be benign: mostly
blogs, forums, or newspapers that make heavy use of
templates. Only 13% of the content is clearly for profit:
either spam, or search-engine optimization with ads.

Our results show that there is duplication on the web:
our approach discovers it through a blind process and
then detects the broad kinds of copying that exists. Our
approach is best at finding content that uses templates
or uniform, repeated structure. Most content with this

11

Description |N | %
advertisements* 2 5
blog* 19 47.5
empty 1 2.5
forms 1 2.5
forum 1 2.5
“suspect” 0 0
JavaScript 2 5
templated site or CMS 17 42.5
Total* 43

Table 5: Classification of a sample of 40 neigh-
borhoods drawn with badness above threshold,
from Ccc. Asterisks (*) indicate overlap between
categories.

0 20 40 60 80 100
Badness Percentage (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
(H

is
to

gr
am

)/
P

[x
<
X

]
(C

D
F)

ba
dn

es
s

th
re

sh
ol

d

Bad Prefixes (4.6%)
Non-Bad
Prefixes
(96.4%)

Figure 13: Frequency of badness of neighbor-
hoods in Cg, as a histogram (bars) and CDF
(lines).

structure is benign, but we find a fraction of it is spam.
The prevalence of templates in the sites we detect is
a direct result of obtaining L via our blind process,
since the definition of L is commonly reused content.
This observation suggests that a labeled dataset more
focused on malicious content (not just duplicated con-
tent) would improve the yield, as we explore in § 7 with
a expert-provided L.

In Geocities: We next evaluate Geocities to confirm
our findings from bad neighborhood detection in Com-
mon Crawl. Here we consider the top 2121 common
distinct chunks from Geocities as our labeled dataset
Lc, and identify bad neighborhoods in Cg using the
same method. Figure 13 shows a combined histogram
and CDF of bad content ratios and indicate that most
of our neighborhoods have low badness ratios. We ob-
serve that 36,780 neighborhoods (4.56% of the 806,769
in the dataset) pass the threshold of badness (0.448,
since here µN,g = 0.152 and σN,g = 0.296).

In Table 6 we classify a sample of 100 randomly cho-
sen neighborhoods above the badness threshold from

Description |N | Type
Link farm 40 Profit
Templates 50 Benign

default 37 Benign
other 13 Benign

Misc 10 Benign
Total 100

Table 6: Classification of a sample of 100 neigh-
borhoods drawn with badness above threshold,
from Cg.

Geocities. We find a much higher rate of malicious
neighborhoods, with 40% of the sampled appearing to
be link farms. These link farms contained lists of self-
referential links for credit cards, auto loans, and financ-
ing (among other things) with Google AdSense adver-
tisements (now defunct) to generate ad revenue. An-
other link farm again contained self-referential links with
haphazard keywords ranging from automobile manufac-
turers to downloading MP3s. The common thread tying
these bad neighborhoods together was the repeated us-
age of keywords and links along with the advertisement.
The rest of the sampled neighborhoods in our Geocities
sample are benign. We find heavy use of the default
Geocities templates, as well as other templates.

In general, the Geocities results confirm what we find
in Common Crawl. We believe the higher rate of copy-
ing in link farms reflects the fact that the content dates
from several years earlier, a time when search engines
were more easily influenced by their input.

7. DETECTION OF EXPERT-IDENTIFIED
CONTENT IN THE WEB

We next turn to detecting expert-identified labeled
content in the web. This approach is useful when the
target is known, but the locations of where it is copied
is unknown. We illustrate this approach by looking for
copies of Wikipedia on the web. Although Wikipedia’s
license allows duplication [30], copies add little benefit
for users, even if they generate revenue from attached
advertisements. More negative uses are copies that ex-
ist only to boost search ratings through link farms, or
to dilute spam or other content. Another future ap-
plication is detection of phishing websites: an expert
could create a labeled dataset from phishing candidates
(banking and e-commerce sites), sites with copies of this
content are likely phishing sites.

To evaluate if our approach to detecting content reuse
works in practice, we evaluate the detection process
with an expert-identified labeled dataset (L). We quan-
tify how much of L is copied elsewhere and under-
stand the nature of such duplicates: are copies whole-
sale rips or are snippets of particular articles being cut
and pasted? Similarly, for what reasons is content from

12

subcat.
Description |N | % % Type
Clones/Rips of Wikipedia 31 78 100

“Wikipedia Ring” 13 42 Profit
Reference Sites 5 16 Profit
Advertisements 10 32 Profit
Fork 1 3 Ambig.
Unknown 2 6 Ambig.

Wikipedia / Wikimedia 5 13 Benign
Search Engine Optimization 3 8 100

e-Commerce 2 67 Profit
Stock Pumping 1 33 Profit

Site utilizing MediaWiki 1 3 Benign
Total 40

Table 7: Classification of the top 40 bad neigh-
borhoods in Ccc, L = Wikipedia.

L being copied?
To evaluate these questions, we utilize a curated la-

beled dataset L and detect targets T that copy in part
or whole from L. We select for L a static HTML dump
of Wikipedia in English created in June 2008 [15]. Each
page of Wikipedia is then processed, resulting in a cu-
rated labeled dataset Lc of 75.0M distinct chunks of
length > 100, and then search for this content in the
Common Crawl corpus (Ccc). Utilizing Lc, we identify
bad neighborhoods in Ccc using the algorithm described
in § 3, step 6.

We expect to find the original Wikipedia and its sister
sites (Wiktionary, Wikiquote, etc.) as well as sites that
may be unofficial Wikipedia mirrors. We also expect
to find partial rips of Wikipedia with advertisements
appended and other sites that utilize Wikipedia content
to promote a brand, service, or product.

Our detection mechanism finds 136k target neighbor-
hoods (almost 2% of 68.9M neighborhoods in Ccc) of
path length 1 that include content from Wikipedia. To
understand how and why more than 100k sites copy
parts of Wikipedia, we focus our analysis on neighbor-
hoods that duplicate from Wikipedia the most. We look
at the top 40 neighborhoods with the highest number
of bad chunks and classify them in Table 7. We find
5 sites that were directly affiliated with Wikimedia, in-
cluding Wikipedia, Wikibooks, and Wikisource. More
interestingly, we find 34 instances of duplicate content
on third party sites: 31 sites rip Wikipedia in a whole-
sale manner, and the remaining 3 utilize content from
Wikipedia in a subtle fashion for search-engine opti-
mization (SEO).

Upon closer examination of the 31 third-party clones
of Wikipedia, we found that almost all are using Wikipedia
content to promote commercial interests. One interest-
ing example was a “Wikipedia Ring”: a group of 13
site rips of Wikipedia, with external links to articles
that leads to another site in the ring. In addition to the
intra-ring links, each site had an advertisement placed
on each page to generate revenue. Other clones exhib-

ited similar behavior, sometimes in conjunction with
the addition of other content either scraped from other
sources or manually curated.

Duplicated Wikipedia content was also utilized to
promote a brand or product. One example site uti-
lized information about retirement plans in the United
States to additionally promote a specific stock to pur-
chase (akin to stock promotion email spam). Another
site subtly utilized content to increase its rankings in
search engines to lure unwary visitors into playing a
slot machine game.

Overall we conclude that we are able to discover and
detect duplicate content and previously unknown copies
of our labeled dataset on the web. Our approach de-
tects target neighborhoods that copy from our labeled
dataset curated from Wikipedia, leading us to find that
in most cases (34 from our sample of 40), Wikipedia is
being utilized for profit. While the Wikipedia license al-
lows duplication in a specific manner, it’s clear that var-
ious operators are monetizing Wikipedia content with-
out attribution. Similarly, while we detect sites that
utilize content from and properly credit Wikipedia, the
utility of this content is unclear to anyone else but the
operators. This application case study shows the ability
of our approach to find such duplication. Future work
will entail different applications, including how we can
detect previously unknown phishing sites.

8. RELATED WORK
There is significant prior work in detection of dupli-

cated content, to reduce storage or network use, and to
find near-duplicate content for plagiarism detection or
information retrieval.

Storage and Network Optimization: Content
duplication detection serves many purposes and sev-
eral fields and industries have revolved around the idea.
Data de-duplication can be utilized to efficiently store
similar or identical pieces of data once instead of mul-
tiple times [23]. The same concept can be utilized over
the network to reduce the amount of data transferred
between two nodes [26, 22]. We build on this work and
their analysis of chunking. While they target the appli-
cation of storage or network optimization, we instead
consider detection of duplication for commercial gain.
Their application forces efficient, on-line processing and
a relatively small corpus, while web analysis is suitable
for off-line analysis with corpus sizes of tens to thou-
sands of terabytes.

Plagiarism Detection: Plagiarism detection is a
very different class of application. While storage and
network optimization requires exact reproduction of orig-
inal contents, the cost of missing a duplicate is much
higher in plagiarism detection, while false duplication
can be corrected in review. Existing approaches to
plagiarism detection therefore emphasize approximate

13

matching over moderate size corpora [25, 12, 14]. Our
work aims to answer the question of whether massive
duplication exists on a web-scale using syntactic meth-
ods; we do not attempt to infer semantic equivalence of
the content.

Information Retrieval: Document similarity and
detection is at the heart of the field of information re-
trieval (IR). Approaches in IR have explored duplicate
detection to improve efficiency and the precision of an-
swers [20, 8, 16, 27]. Our use of cryptographic hashing
has high precision at the cost of lower recall by missing
mutated files.

Broder et al. [7] develop a new technique called “shin-
gling” (today known as n-grams) to cluster documents
that are “roughly the same”. They use this technique
to find documents that are nearly identical in content
and potentially located at different URLs to find docu-
ments that move. While their focus is on finding syn-
tactically related documents on the web, it can be ap-
plied to finding content reuse on the web. One can
consider an n-gram as an approximate hash that iden-
tifies a document; we instead use cryptographic hashes
to provide high precision. We also separate discovery
and detection, allowing blind or informed identification
of the labeled dataset.

Henzinger [16] compares algorithms that use shin-
gling and Charikar’s locality sensitive hashing (LSH) on
1.6 B web-pages to compare their performance. While
LSH achieves better precision than shingling, combining
the two algorithms provides an even higher precision.
Exploration of LSH is an interesting possible comple-
ment or addition to our use of cryptographic hashing.

SpotSigs [29] is a robust signature for documents that
combines stop-words and short chains of adjacent terms.
They also develop a matching algorithm using partition-
ing and inverted index pruning to search for similarities.
SpotSigs’ approach is similar to n-grams, while we use
a different hashing and clustering method. We also sep-
arate the discovery and detection sides of the problem.

Chiu et al. [9] develop a system to detect instances
of text reuse on sentence-level queries that are writ-
ten about the same topic but in different styles. They
compare results using Yahoo!’s API, Iterative Chunk-
ing, and Query n-grams and find that n-grams works
best in their application. Their goal is analogous to the
detection phase of our work, where they find a set of
documents using approximate matching. We do both
discovery and detection with exact matching of chunks.

Yang and Callan [31] develop a system that imple-
ments a clustering algorithm using document metadata
as constraints to group near-duplicates together in EPA
and DOT document collections. They exploit constraints
in document metadata; we instead focus on general
datasets that provide no such metadata.

Kim et al. [18] develop an algorithm for overlaps and

content reuse detection that is both efficient (fast) and
incremental (given new content, compare to entries in
the data collection). After creating sentence-level sig-
natures for each document, processing a query in the
system involved converting it to a signature and return-
ing documents that contain signatures that are some
Euclidean distance

√
d of each other. Their focus is

sentence-level reuse in blogs and news articles with ap-
proximate matching. We focus on larger chunks of reuse
and exact matching.

9. CONCLUSIONS
In this paper we developed a method to discover pre-

viously unknown duplicated content and to detect that
or other content in a web-size corpus. We also showed
how to exploit hierarchy in the corpus to identify bad
neighborhoods, improving robustness to random doc-
ument changes. We verified that our approach works
with controlled experiments, then used it to explore du-
plication in a recent web crawl with an informed and
uninformed discovery process. Although most dupli-
cated content is benign, we show that our approach
does detect duplication as-is in link farms and webpage
spamming.

10. REFERENCES

[1] Apache. Hadoop. http://hadoop.apache.org,
2012.

[2] Apache. Pig. http://pig.apache.org, 2013.
[3] ArchiveTeam. Geocities. http://archiveteam.

org/index.php?title=Geocities, 2009.
[4] C. Ardi and J. Heidemann. Web-scale content

reuse detection (extended). Technical Report
ISI-TR-692, USC/Information Sciences Institute,
June 2014.

[5] B. H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, July 1970.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of
the Seventh International World Wide Web
Conference, pages 107–117, Brisbane, Queensland,
Australia, Apr. 1998.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse,
and G. Zweig. Syntactic clustering of the web. In
Selected papers from the sixth international
conference on World Wide Web, pages 1157–1166,
Essex, UK, 1997. Elsevier Science Publishers Ltd.

[8] M. S. Charikar. Similarity estimation techniques
from rounding algorithms. In In Proc. of 34th
STOC, pages 380–388. ACM, 2002.

[9] S. Chiu, I. Uysal, and W. B. Croft. Evaluating
text reuse discovery on the web. In Proceedings of
the third symposium on Information interaction

14

http://hadoop.apache.org
http://pig.apache.org
http://archiveteam.org/index.php?title=Geocities
http://archiveteam.org/index.php?title=Geocities

in context, IIiX ’10, pages 299–304, New York,
NY, USA, 2010. ACM.

[10] CommonCrawlFoundation. Common crawl.
http://commoncrawl.org, 2012.

[11] J. Dean, S. Ghemawat, and G. Inc. Mapreduce:
simplified data processing on large clusters. In In
OSDI04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation. USENIX Association, 2004.

[12] H. Dreher. Automatic conceptual analysis for
plagiarism detection.

[13] D. Eastlake 3rd and P. Jones. US Secure Hash
Algorithm 1 (SHA1). RFC 3174 (Informational),
Sept. 2001. Updated by RFCs 4634, 6234.

[14] S. M. Z. Eissen and B. Stein. Intrinsic plagiarism
detection. In Proceedings of the European
Conference on Information Retrieval ECIR-06,
2006.

[15] W. Foundation. Static html dump of wikipedia,
June 2008.

[16] M. Henzinger. Finding near-duplicate web pages:
a large-scale evaluation of algorithms. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development
in information retrieval, SIGIR ’06, pages
284–291, New York, NY, USA, 2006. ACM.

[17] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World-Wide Web Journal,
2(4):219–229, Dec. 1999.

[18] J. W. Kim, K. S. Candan, and J. Tatemura.
Efficient overlap and content reuse detection in
blogs and online news articles. In Proceedings of
the 18th international conference on World wide
web, WWW ’09, pages 81–90, New York, NY,
USA, 2009. ACM.

[19] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. In Proceedings
of the International Conference on Very Large
Data Bases, pages 950–961, Vienna, Austria,
Sept. 2007. VLDB Endowment.

[20] G. S. Manku, A. Jain, and A. Das Sarma.
Detecting near-duplicates for web crawling. In
Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 141–150,
New York, NY, USA, 2007. ACM.

[21] National Institute of Standards and Technology.
Secure hash standard (SHS). Federal Information
Processing Standard (FIPS) 180-3, National
Institute of Science and Technology, Oct. 2008.

[22] H. Pucha, D. G. Andersen, and M. Kaminsky.
Exploiting similarity for multi-source downloads
using file handprints. In Proceedings of the 4th
USENIX conference on Networked systems design
& implementation, NSDI’07, pages 2–2, Berkeley,

CA, USA, 2007. USENIX Association.
[23] S. Quinlan and S. Dorward. Venti: A new

approach to archival data storage. In Proceedings
of the 1st USENIX Conference on File and
Storage Technologies, FAST ’02, Berkeley, CA,
USA, 2002. USENIX Association.

[24] R. Salakhutdinov and G. Hinton. Semantic
hashing. Int. J. Approx. Reasoning,
50(7):969–978, July 2009.

[25] A. Si, H. V. Leong, and R. W. H. Lau. Check: a
document plagiarism detection system. In
Proceedings of the 1997 ACM symposium on
Applied computing, SAC ’97, pages 70–77, New
York, NY, USA, 1997. ACM.

[26] N. T. Spring and D. Wetherall. A
protocol-independent technique for eliminating
redundant network traffic. In In Proceedings of
ACM SIGCOMM, pages 87–95, 2000.

[27] B. Stein, M. Koppel, and E. Stamatatos.
Plagiarism analysis, authorship identification, and
near-duplicate detection PAN’07, Dec. 2007.

[28] O. Tange. Gnu parallel - the command-line power
tool. ;login: The USENIX Magazine, 36(1):42–47,
Feb 2011.

[29] M. Theobald, J. Siddharth, and A. Paepcke.
Spotsigs: robust and efficient near duplicate
detection in large web collections. In Proceedings
of the 31st annual international ACM SIGIR
conference on Research and development in
information retrieval, SIGIR ’08, pages 563–570,
New York, NY, USA, 2008. ACM.

[30] Wikipedia. Reusing wikipedia content, 2014.
[Online; accessed 31-Mar-2014].

[31] H. Yang and J. Callan. Near-duplicate detection
by instance-level constrained clustering. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development
in information retrieval, SIGIR ’06, pages
421–428, New York, NY, USA, 2006. ACM.

APPENDIX
A. REMOVING RECURSION ERRORS

When we examine the distribution of the lengths of
all neighborhoods in the Common Crawl dataset (Fig-
ure 14), we observe a noticeable gap in the distribution
when prefix length is 97.

The right of the graph is all recursion errors, all links
97 or longer (0.005% of data) is bad. We confirm this
with a random sample of 50 pages of path length 97
or longer. We therefore set a threshold of 96, retaining
almost all of the original data. We know that some of
this data is still bad: a sample of 100 neighborhoods
of length 20 or longer (0.46% of total data) show that
about two thirds are bad, but we limit pruning to avoid
pruning valid data. As future work, we plan to explore

15

http://commoncrawl.org

100 101 102 103 104

Neighborhood Prefix Length

100

101

102

103

104

105

106

107

108

109

Nu
m

be
r o

f O
cc

ur
en

ce
s

Common crawl Neighborhood Prefix Lengths

x
=

97

recursion / ripping errors

Figure 14: Prefix lengths of neighborhoods in
Ccc.

better methods to remove ripping errors.
While some recursion errors remain, our cleaning leaves

most pages unaffected by recursion errors: a random
sample of 100 of all lengths suggests that only 1% of all
neighborhoods are recursion errors.

We found similar problems in Geocities, and solved
them with a similar cleaning process. While each new
data crawl will need to be reviewed for collection errors,
resolution of problems is straightforward and additional
work will not be required as individual crawlers mature.

B. CHOICE OF HASH FUNCTION
Central to our work is choice of hash function. We

employ a cryptographic hash function, but alternatives
such as locality-sensitive and semantic hashes are also
possible. Each reduces arbitrary data to a short value,
but they behave differently in the face of data mutation.

We choose a cryptographic hash for its precision—
identical input always produces the same output, and
different input yields a different output. A hash col-
lision for any two distinct strings would happen with
probability 2−b for a b-bit hash. The drawback to uti-
lizing a cryptographic hash function is that even minor
changes to the input give a different output, causing
otherwise duplicate content to pass undetected. Our
primary method to counter this effect is chunking, so
that mutations must occur to every chunk in a file to
have it completely escape a match. We could also re-
duce the impact of minor changes by normalizing the
input, perhaps collapsing case and whitespace; evalua-
tion of normalization is future work.

Locality sensitive hashing (LSH) generalizes crypto-
graphic hashing, effectively performing parallel crypto-
graphic hashes to allow detection of similar but non-
identical data (for example, [19]). In a sense, chunking
is an “application-level” LSH approach; explicit com-
parison to LSH algorithms is an opportunity for future
work.

Semantic hashes does linguistic (or at least syntactic)

analysis of the text to compute a hash that represents
the meaning of the source material [24]. In the extreme,
it can identify two sentences that talk about the same
topic without sharing any words in common. The dis-
advantage of semantic hashing is the large number of
false positives that would occur in a corpus the size of
the web.

The specific cryptographic hash we use is NIST SHA-
1 [21, 13]. It is reasonably resilient to collisions and
The SHA-1 hash function takes in arbitrary input and
produces a reasonably short, fixed-length, 160-bit hash
value. In principle we can use any similar hash algo-
rithm. We considered SHA-2 and SHA-3, but current
implementations are significantly slower than the more
mature SHA-1.

16

	Introduction
	Problem Statement
	Methodology
	Overview
	Discovery
	Detection
	Cleaning the Data
	Detecting and Handling Recursion Errors
	Stop Chunk Removal

	Choice of Hash Function
	Shifting Detection Into Network

	Datasets and Implementation
	Validation
	Do Our Cleaning Methods Work?
	Can We Discover Known Files and Chunks?
	Can We Detect Specific Bad Pages?
	Can We Detect Known Bad Neighborhoods?

	Application: Duplication of Web Content
	Why is File-level Discovery Inadequate?
	How Does Chunking Affect Discovery?
	Are There Bad Neighborhoods in the Real World?

	Detection of Expert-Identified Content in the Web
	Related Work
	Conclusions
	References
	Removing Recursion Errors
	Choice of Hash Function

